Mohammadzadeh Ibrahim, Hajikarimloo Bardia, Eini Pooya, Niroomand Behnaz, Mohammadzadeh Shahin, Habibi Mohammad Amin, Babak Zohre Masoumi Shahr-E, Aliaghaei Abbas
Skull Base Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
Department of Neurological Surgery, University of Virginia, Charlottesville, VA, USA.
Neuroradiology. 2025 May 21. doi: 10.1007/s00234-025-03657-3.
Predicting hematoma progression in traumatic brain injury (TBI) is crucial for timely interventions and effective clinical management, as unchecked hematoma growth can lead to rapid neurological deterioration, increased intracranial pressure, and poor patient outcomes. Accurate risk assessment enables proactive therapeutic strategies, minimizing secondary brain damage and improving survival rates.
This study evaluated to assess the performance of artificial intelligence (AI) algorithms, including machine learning (ML) and deep learning (DL), in forecasting risk of hematoma progression. Comprehensive searches across Embase, Scopus, Web of Science and PubMed identified relevant studies, with data extracted on algorithm metrics such as sensitivity, specificity, and area under the curve (AUC).
1,240 studies screened, five out of them met the inclusion criteria, evaluating various AI models. The meta-analysis revealed a pooled sensitivity and specificity was 0.76 [95% CI: 0.67-0.83], 0.84 [95% CI: 0.78-0.89], positive and negative likelihood ratio was 4.82 [95% CI: 3.51-6.61] 0.29 [95% CI: 0.21-0.39], diagnostic score was 2.82 [95% CI: 2.33-3.32], diagnostic odds ratio was16.85 [95% CI: 10.29-27.59] and an AUC of 0.88 [95% CI: 0.85-0.90]. Among the evaluated algorithms, XGBoost has the best predictive performance with an accuracy of 91%. Integrating radiomics and clinical features in these models considerably improved the predictive outcomes.
The current results demonstrated the potential of AI-based models to improve hematoma progression prediction for TBI patients, thereby supporting more effective clinical decision-making. Further research should aim to standardize datasets and diversify patient populations to improve model applicability and reliability.
预测创伤性脑损伤(TBI)中的血肿进展对于及时干预和有效的临床管理至关重要,因为未加控制的血肿增长可导致快速的神经功能恶化、颅内压升高及患者预后不良。准确的风险评估有助于制定积极的治疗策略,将继发性脑损伤降至最低并提高生存率。
本研究评估人工智能(AI)算法,包括机器学习(ML)和深度学习(DL),在预测血肿进展风险方面的性能。通过对Embase、Scopus、科学网和PubMed进行全面检索,确定了相关研究,并提取了诸如敏感性、特异性和曲线下面积(AUC)等算法指标的数据。
共筛选1240项研究,其中5项符合纳入标准,评估了各种AI模型。荟萃分析显示,合并敏感性和特异性分别为0.76[95%CI:0.67 - 0.83]、0.84[95%CI:0.78 - 0.89],阳性和阴性似然比分别为4.82[95%CI:3.51 - 6.61]、0.29[95%CI:0.21 - 0.39],诊断分数为2.82[95%CI:2.33 - 3.32],诊断比值比为16.85[95%CI:10.29 - 27.59],AUC为0.88[95%CI:0.85 - 0.90]。在评估的算法中,XGBoost具有最佳预测性能,准确率为91%。在这些模型中整合放射组学和临床特征可显著改善预测结果。
目前的结果证明了基于AI的模型在改善TBI患者血肿进展预测方面的潜力,从而支持更有效的临床决策。进一步的研究应旨在规范数据集并使患者群体多样化,以提高模型的适用性和可靠性。