Suppr超能文献

利用影像组学评分和临床参数预测创伤性脑损伤患者脑实质内出血进展和神经功能结局

Prediction of Intraparenchymal Hemorrhage Progression and Neurologic Outcome in Traumatic Brain Injury Patients Using Radiomics Score and Clinical Parameters.

作者信息

Shih Yun-Ju, Liu Yan-Lin, Chen Jeon-Hor, Ho Chung-Han, Yang Cheng-Chun, Chen Tai-Yuan, Wu Te-Chang, Ko Ching-Chung, Zhou Jonathan T, Zhang Yang, Su Min-Ying

机构信息

Department of Medical Imaging, Chi Mei Medical Center, Tainan 710, Taiwan.

Department of Radiological Sciences, University of California, Irvine, CA 92868, USA.

出版信息

Diagnostics (Basel). 2022 Jul 10;12(7):1677. doi: 10.3390/diagnostics12071677.

Abstract

(1) Background: Radiomics analysis of spontaneous intracerebral hemorrhages on computed tomography (CT) images has been proven effective in predicting hematoma expansion and poor neurologic outcome. In contrast, there is limited evidence on its predictive abilities for traumatic intraparenchymal hemorrhage (IPH). (2) Methods: A retrospective analysis of 107 traumatic IPH patients was conducted. Among them, 45 patients (42.1%) showed hemorrhagic progression of contusion (HPC) and 51 patients (47.7%) had poor neurological outcome. The IPH on the initial CT was manually segmented for radiomics analysis. After feature extraction, selection and repeatability evaluation, several machine learning algorithms were used to derive radiomics scores (R-scores) for the prediction of HPC and poor neurologic outcome. (3) Results: The AUCs for R-scores alone to predict HPC and poor neurologic outcome were 0.76 and 0.81, respectively. Clinical parameters were used to build comparison models. For HPC prediction, variables including age, multiple IPH, subdural hemorrhage, Injury Severity Score (ISS), international normalized ratio (INR) and IPH volume taken together yielded an AUC of 0.74, which was significantly ( = 0.022) increased to 0.83 after incorporation of the R-score in a combined model. For poor neurologic outcome prediction, clinical variables of age, Glasgow Coma Scale, ISS, INR and IPH volume showed high predictability with an AUC of 0.92, and further incorporation of the R-score did not improve the AUC. (4) Conclusion: The results suggest that radiomics analysis of IPH lesions on initial CT images has the potential to predict HPC and poor neurologic outcome in traumatic IPH patients. The clinical and R-score combined model further improves the performance of HPC prediction.

摘要

(1)背景:计算机断层扫描(CT)图像上自发性脑出血的放射组学分析已被证明在预测血肿扩大和不良神经结局方面有效。相比之下,关于其对创伤性脑实质内出血(IPH)预测能力的证据有限。(2)方法:对107例创伤性IPH患者进行回顾性分析。其中,45例患者(42.1%)出现挫伤性出血进展(HPC),51例患者(47.7%)神经功能结局不良。对初始CT上的IPH进行手动分割以进行放射组学分析。在特征提取、选择和重复性评估后,使用几种机器学习算法得出放射组学评分(R评分),以预测HPC和不良神经结局。(3)结果:单独的R评分预测HPC和不良神经结局的AUC分别为0.76和0.81。使用临床参数建立比较模型。对于HPC预测,包括年龄、多发IPH、硬膜下出血、损伤严重程度评分(ISS)、国际标准化比值(INR)和IPH体积的变量综合起来的AUC为0.74,在联合模型中纳入R评分后显著(P = 0.022)提高到0.83。对于不良神经结局预测,年龄、格拉斯哥昏迷量表、ISS、INR和IPH体积的临床变量显示出较高的预测性,AUC为0.92,进一步纳入R评分并未提高AUC。(4)结论:结果表明,初始CT图像上IPH病变的放射组学分析有可能预测创伤性IPH患者的HPC和不良神经结局。临床和R评分联合模型进一步提高了HPC预测的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/394c/9320220/9ef41bc6c091/diagnostics-12-01677-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验