Suppr超能文献

基于计算机断层扫描的影像组学特征联合临床放射学因素预测脑挫裂伤进行性出血

Radiomics Features on Computed Tomography Combined With Clinical-Radiological Factors Predicting Progressive Hemorrhage of Cerebral Contusion.

作者信息

Yang Qingning, Sun Jun, Guo Yi, Zeng Ping, Jin Ke, Huang Chencui, Xu Jingxu, Hou Liran, Li Chuanming, Feng Junbang

机构信息

Department of Radiology, Chongqing University Central Hospital, Chongqing, China.

Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co., Beijing, China.

出版信息

Front Neurol. 2022 Jun 14;13:839784. doi: 10.3389/fneur.2022.839784. eCollection 2022.

Abstract

BACKGROUND

Traumatic brain injury (TBI) is the main cause of death and severe disability in young adults worldwide. Progressive hemorrhage (PH) worsens the disease and can cause a poor neurological prognosis. Radiomics analysis has been used for hematoma expansion of hypertensive intracerebral hemorrhage. This study attempts to develop an optimal radiomics model based on non-contrast CT to predict PH by machine learning (ML) methods and compare its prediction performance with clinical-radiological models.

METHODS

We retrospectively analyzed 165 TBI patients, including 89 patients with PH and 76 patients without PH, whose data were randomized into a training set and a testing set at a ratio of 7:3. A total of 10 different machine learning methods were used to predict PH. Univariate and multivariable logistic regression analyses were implemented to screen clinical-radiological factors and to establish a clinical-radiological model. Then, a combined model combining clinical-radiological factors with the radiomics score was constructed. The area under the receiver operating characteristic curve (AUC), accuracy and F1 score, sensitivity, and specificity were used to evaluate the models.

RESULTS

Among the 10 various ML algorithms, the support vector machine (SVM) had the best prediction performance based on 12 radiomics features, including the AUC (training set: 0.918; testing set: 0.879) and accuracy (training set: 0.872; test set: 0.834). Among the clinical and radiological factors, the onset-to-baseline CT time, the scalp hematoma, and fibrinogen were associated with PH. The radiomics model's prediction performance was better than the clinical-radiological model, while the predictive nomogram combining the radiomics features with clinical-radiological characteristics performed best.

CONCLUSIONS

The radiomics model outperformed the traditional clinical-radiological model in predicting PH. The nomogram model of the combined radiomics features and clinical-radiological factors is a helpful tool for PH.

摘要

背景

创伤性脑损伤(TBI)是全球年轻成年人死亡和严重残疾的主要原因。进行性出血(PH)会使病情恶化,并可能导致不良的神经学预后。放射组学分析已用于高血压性脑出血的血肿扩大研究。本研究试图基于非增强CT开发一种最佳的放射组学模型,通过机器学习(ML)方法预测PH,并将其预测性能与临床放射学模型进行比较。

方法

我们回顾性分析了165例TBI患者,其中89例有PH,76例无PH,数据按7:3的比例随机分为训练集和测试集。共使用10种不同的机器学习方法预测PH。进行单变量和多变量逻辑回归分析以筛选临床放射学因素并建立临床放射学模型。然后,构建一个将临床放射学因素与放射组学评分相结合的联合模型。采用受试者操作特征曲线(AUC)下面积、准确率、F1评分、敏感性和特异性来评估模型。

结果

在10种不同的ML算法中,基于12个放射组学特征的支持向量机(SVM)具有最佳预测性能,包括AUC(训练集:0.918;测试集:0.879)和准确率(训练集:0.872;测试集:0.834)。在临床和放射学因素中,发病至基线CT时间、头皮血肿和纤维蛋白原与PH相关。放射组学模型的预测性能优于临床放射学模型,而将放射组学特征与临床放射学特征相结合的预测列线图表现最佳。

结论

放射组学模型在预测PH方面优于传统的临床放射学模型。放射组学特征与临床放射学因素相结合的列线图模型是预测PH的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5e8/9237337/600e062adbdf/fneur-13-839784-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验