Suppr超能文献

基于改良计算机断层扫描窗区分新鲜或陈旧性骨质疏松性椎体压缩骨折的诊断模型:一项回顾性队列研究

Diagnostic model for distinguishing fresh or old osteoporotic vertebral compression fractures based on modified computed tomography window: a retrospective cohort study.

作者信息

Wang Shichu, Han Zhenghan, Lei Yiting, Liu Wenjun, Huang Tianji, Liu Bo

机构信息

The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Chongqing, China.

出版信息

Eur Spine J. 2025 May 21. doi: 10.1007/s00586-025-08923-9.

Abstract

PURPOSE

To develop and validate a Computed Tomography (CT) -based nomogram for distinguishing fresh from old osteoporotic vertebral compression fractures (OVCFs), with magnetic resonance imaging (MRI) as the reference standard.

METHODS

In this retrospective study, OVCF patients from The First Affiliated Hospital of Chongqing Medical University (August 2022-December 2023) were analyzed. Modified CT window parameters (width: 400; level: 200) were applied to quantify vertebral features, including CT values, height reduction, endplate integrity, trabecular sparsity, Schmorl's nodes, and high-density shadows. Predictive variables were selected via univariate and multivariate logistic regression, followed by nomogram construction. Model performance was assessed using receiver operating characteristic (ROC) curves (area under the curve, AUC), calibration plots, Hosmer-Lemeshow testing, and decision curve analysis (DCA). 10-fold cross-validation was used to evaluate the generalization performance of the model.

RESULTS

The nomogram incorporated seven imaging biomarkers, achieving AUCs of 0.941 (training cohort) and 0.974 (validation cohort). The calibration accuracy was assessed using the Hosmer-Lemeshow test (χ²=3.30, P = 0.95). DCA demonstrating significant clinical utility across probability thresholds. In cross-validation, the mean AUC on the validation sets was 0.911 ± 0.080 (mean ± standard deviation).

CONCLUSION

The proposed CT-based nomogram achieved adequate performance in identifying fresh and old OVCFs.

摘要

目的

以磁共振成像(MRI)作为参考标准,开发并验证一种基于计算机断层扫描(CT)的列线图,用于区分新鲜与陈旧性骨质疏松性椎体压缩骨折(OVCF)。

方法

在这项回顾性研究中,分析了重庆医科大学附属第一医院(2022年8月至2023年12月)的OVCF患者。应用改良的CT窗参数(宽度:400;水平:200)来量化椎体特征,包括CT值、高度降低、终板完整性、小梁稀疏、Schmorl结节和高密度影。通过单变量和多变量逻辑回归选择预测变量,随后构建列线图。使用受试者工作特征(ROC)曲线(曲线下面积,AUC)、校准图、Hosmer-Lemeshow检验和决策曲线分析(DCA)评估模型性能。采用10折交叉验证来评估模型的泛化性能。

结果

该列线图纳入了7种影像生物标志物,训练队列的AUC为0.941,验证队列的AUC为0.974。使用Hosmer-Lemeshow检验评估校准准确性(χ²=3.30,P = 0.95)。DCA表明在各个概率阈值下均具有显著的临床实用性。在交叉验证中,验证集上的平均AUC为0.911±0.080(平均值±标准差)。

结论

所提出的基于CT的列线图在识别新鲜和陈旧性OVCF方面表现良好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验