Suppr超能文献

一种用于在数字 X 光片上识别新鲜椎体压缩性骨折的深度学习模型。

A deep-learning model for identifying fresh vertebral compression fractures on digital radiography.

机构信息

Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, China.

Department of Applied Clinical Medicine, Infervision, Beijing, China.

出版信息

Eur Radiol. 2022 Mar;32(3):1496-1505. doi: 10.1007/s00330-021-08247-4. Epub 2021 Sep 22.

Abstract

OBJECTIVES

To develop a deep-learning (DL) model for identifying fresh VCFs from digital radiography (DR), with magnetic resonance imaging (MRI) as the reference standard.

METHODS

Patients with lumbar VCFs were retrospectively enrolled from January 2011 to May 2020. All patients underwent DR and MRI scanning. VCFs were categorized as fresh or old according to MRI results, and the VCF grade and type were assessed. The raw DR data were sent to InferScholar Center for annotation. A DL-based prediction model was built, and its diagnostic performance was evaluated. The DeLong test was applied to assess differences in ROC curves between different models.

RESULTS

A total of 1877 VCFs in 1099 patients were included in our study and randomly divided into development (n = 824 patients) and test (n = 275 patients) datasets. The ensemble model identified fresh and old VCFs, reaching an AUC of 0.80 (95% confidence interval [CI], 0.77-0.83), an accuracy of 74% (95% CI, 72-77%), a sensitivity of 80% (95% CI, 77-83%), and a specificity of 68% (95% CI, 63-72%). Lateral (AUC, 0.83) views exhibited better performance than anteroposterior views (AUC, 0.77), and the best performance among respective subgroupings was obtained for grade 3 (AUC, 0.89) and crush-type (AUC, 0.87) subgroups.

CONCLUSION

The proposed DL model achieved adequate performance in identifying fresh VCFs from DR.

KEY POINTS

• The ensemble deep-learning model identified fresh VCFs from DR, reaching an AUC of 0.80, an accuracy of 74%, a sensitivity of 80%, and a specificity of 68% with the reference standard of MRI. • The lateral views (AUC, 0.83) exhibited better performance than anteroposterior views (AUC, 0.77). • The grade 3 (AUC, 0.89) and crush-type (AUC, 0.87) subgroups showed the best performance among their respective subgroupings.

摘要

目的

开发一种深度学习(DL)模型,用于从数字射线照相术(DR)中识别新鲜的椎体压缩性骨折(VCF),以磁共振成像(MRI)为参考标准。

方法

回顾性招募 2011 年 1 月至 2020 年 5 月期间患有腰椎 VCF 的患者。所有患者均接受 DR 和 MRI 扫描。根据 MRI 结果将 VCF 分为新鲜或陈旧,并评估 VCF 分级和类型。将原始 DR 数据发送到 InferScholar 中心进行注释。构建基于 DL 的预测模型,并评估其诊断性能。应用 DeLong 检验评估不同模型的 ROC 曲线之间的差异。

结果

本研究共纳入 1099 例患者的 1877 个 VCF,随机分为开发(n=824 例)和测试(n=275 例)数据集。该集成模型可识别新鲜和陈旧的 VCF,其 AUC 为 0.80(95%置信区间[CI],0.77-0.83),准确率为 74%(95%CI,72-77%),敏感度为 80%(95%CI,77-83%),特异度为 68%(95%CI,63-72%)。侧位(AUC,0.83)视图的表现优于前后位(AUC,0.77),在各自的亚组中,3 级(AUC,0.89)和压缩型(AUC,0.87)亚组的表现最佳。

结论

所提出的 DL 模型在从 DR 中识别新鲜 VCF 方面表现出了足够的性能。

关键点

• 基于集成的深度学习模型利用 MRI 作为参考标准,从 DR 中识别新鲜的 VCF,其 AUC 为 0.80,准确率为 74%,敏感度为 80%,特异度为 68%。

• 侧位(AUC,0.83)视图的表现优于前后位(AUC,0.77)。

• 在各自的亚组中,3 级(AUC,0.89)和压缩型(AUC,0.87)亚组的表现最佳。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验