Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
Julius Centre, UMC Utrecht, Utrecht University, Utrecht, The Netherlands.
J R Soc Interface. 2023 Aug;20(205):20220912. doi: 10.1098/rsif.2022.0912. Epub 2023 Aug 9.
Infectious diseases often involve multiple pathogen species or multiple strains of the same pathogen. As such, knowledge of how different pathogens interact is key to understand and predict the outcome of interventions targeting only a subset of species or strains involved in disease. Population-level data may be useful to infer pathogen strain interactions, but most previously used inference methods only consider uniform interactions between all strains or focus on marginal pairwise interactions. As such, these methods are prone to bias induced by indirect interactions through other strains. Here, we evaluated statistical network inference for reconstructing heterogeneous interactions from cross-sectional surveys detecting joint presence/absence patterns of pathogen strains within hosts. We applied various network models to simulated survey data, representing endemic infection states of multiple pathogen strains with potential interactions in acquisition or clearance of infection. Satisfactory performance was demonstrated by the estimators converging to the true interactions. Accurate reconstruction of interaction networks was achieved by regularization or penalization for sample size. Although performance deteriorated in the presence of host heterogeneity, this was overcome by correcting for individual-level risk factors. Our work demonstrates how statistical network inference could prove useful for detecting multi-strain pathogen interactions and may have applications beyond epidemiology.
传染病通常涉及多种病原体或同一病原体的多个菌株。因此,了解不同病原体如何相互作用对于理解和预测仅针对疾病涉及的部分物种或菌株的干预措施的结果至关重要。群体水平的数据可能有助于推断病原体菌株的相互作用,但以前使用的大多数推断方法仅考虑所有菌株之间的均匀相互作用,或者侧重于边际成对相互作用。因此,这些方法容易受到通过其他菌株产生的间接相互作用的偏差影响。在这里,我们从检测宿主内病原体菌株共同存在/缺失模式的横断面调查中,评估了从重建异质相互作用的统计网络推断。我们将各种网络模型应用于模拟的调查数据,代表了具有感染获得或清除中潜在相互作用的多种病原体菌株的地方性感染状态。通过收敛到真实相互作用的估计量,证明了估计器的良好性能。通过对样本量进行正则化或惩罚,实现了相互作用网络的准确重建。尽管在存在宿主异质性的情况下性能下降,但通过纠正个体水平的风险因素克服了这一问题。我们的工作表明,统计网络推断如何有助于检测多菌株病原体相互作用,并可能在流行病学以外具有应用。