Suppr超能文献

通过共培养工程生产羟基酪醇。

Production of Hydroxytyrosol by Coculture Engineering.

机构信息

School of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China.

Jiangxi Baiyue Food Co. Ltd, Pingxiang, Jiangxi 337000, P. R. China.

出版信息

ACS Synth Biol. 2022 Sep 16;11(9):3067-3077. doi: 10.1021/acssynbio.2c00300. Epub 2022 Aug 11.

Abstract

Hydroxytyrosol is a valuable plant-derived phenolic compound with excellent pharmacological activities for application in the food and health care industries. Microbial biosynthesis provides a promising approach for sustainable production of hydroxytyrosol via metabolic engineering. However, its efficient production is limited by the machinery and resources available in the commonly used individual microbial platform, for example, . In this study, a coculture system was designed for biosynthesis of hydroxytyrosol by taking advantage of their inherent metabolic properties, whereby was engineered for production of tyrosol based on an endogenous Ehrlich pathway, and was dedicated to converting tyrosol to hydroxytyrosol by use of native hydroxyphenylacetate 3-monooxygenase (HpaBC). To enhance hydroxytyrosol production, intra- and intermodule engineering was employed in this microbial consortium: (I) in the upstream strain, multipath regulations combining with a glucose-sensitive GAL regulation system were engineered to enhance the precursor supply, resulting in significant increase of tyrosol production (from 17.60 mg/L to 461.07 mg/L); (II) was overexpressed in the downstream strain, improving the conversion rate of tyrosol to hydroxytyrosol from 0.03% to 86.02%; (III) and last, intermodule engineering with this coculture system was performed by optimization of the initial inoculation ratio of each population and fermentation conditions, achieving 435.32 mg/L of hydroxytyrosol. This coculture strategy provides a new opportunity for production of hydroxytyrosol from inexpensive feedstock.

摘要

羟基酪醇是一种有价值的植物衍生酚类化合物,具有出色的药理学活性,可应用于食品和保健行业。微生物生物合成通过代谢工程为羟基酪醇的可持续生产提供了有前途的方法。然而,其高效生产受到常用单一微生物平台中可用的机制和资源的限制,例如 。在这项研究中,利用其固有代谢特性设计了一种 共培养系统来合成羟基酪醇,其中 基于内源性 Ehrlich 途径被工程化为生产酪醇,而 则利用天然的对羟基苯乙酸 3-单加氧酶(HpaBC)将酪醇转化为羟基酪醇。为了提高羟基酪醇的产量,在这个微生物联合体中采用了模块内和模块间工程:(I)在上游 菌株中,结合葡萄糖敏感 GAL 调控系统的多途径调控被工程化以增强前体供应,导致酪醇产量显著增加(从 17.60 mg/L 增加到 461.07 mg/L);(II)在下游 菌株中过表达 ,将酪醇转化为羟基酪醇的转化率从 0.03%提高到 86.02%;(III)最后,通过优化每个种群的初始接种比例和发酵条件对共培养系统进行模块间工程化,实现了 435.32 mg/L 的羟基酪醇产量。这种 共培养策略为利用廉价原料生产羟基酪醇提供了新的机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验