Zhang Leiqian, Luo Ke, Gong Jiaming, Zhou Yazhou, Guo Hele, Yu Yi, He Guanjie, Gohy Jean-François, Parkin Ivan P, Hofkens Johan, He Qing, Liu Tianxi, Müllen Klaus, Lai Feili
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China.
State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China.
Angew Chem Int Ed Engl. 2025 Jul 21;64(30):e202506822. doi: 10.1002/anie.202506822. Epub 2025 Jun 2.
Zinc-iodine batteries (ZIBs) are promising candidates for safe and sustainable energy storage but are hindered by polyiodide shuttling, leading to rapid capacity decay and limited cyclability. In this work, we propose a "polyiodide reservoirs" concept, utilizing iodophilic covalent organic cages to confine polyiodide through multiple noncovalent interactions. By precisely engineering the nitrogen-active site densities around 3D cavities, these cages evolve from open to near-enclosed structure, achieving molecular-level polyiodide entrapment. The optimized superphane cage (18 N-active sites) enables a ZIB with 90.1% capacity retention after 4000 cycles at 5 C, even under extreme conditions (58.9 wt% iodine content within the cage and an iodine area loading of 3.7 mg cm in the cathode). Importantly, the cage's solubility-driven regeneration capability retains 85.4% initial capacity over three reuse cycles. This work establishes covalent organic superphanes as a transformative platform for long-life ZIBs, offering a dual solution to shuttle suppression and electrode sustainability through structural confinement and dynamic recyclability.
锌碘电池(ZIBs)是安全且可持续储能的有前景的候选者,但受到多碘化物穿梭效应的阻碍,导致容量迅速衰减和循环稳定性有限。在这项工作中,我们提出了一种“多碘化物储存库”概念,利用亲碘共价有机笼通过多种非共价相互作用来限制多碘化物。通过精确设计三维空腔周围的氮活性位点密度,这些笼子从开放结构演变为近乎封闭的结构,实现了分子水平的多碘化物捕获。优化后的超环笼(18个氮活性位点)使ZIB在5C下经过4000次循环后仍能保持90.1%的容量,即使在极端条件下(笼内碘含量为58.9 wt%,阴极碘面积负载为3.7 mg cm)也是如此。重要的是,笼的溶解度驱动的再生能力在三个重复使用循环中保留了85.4%的初始容量。这项工作将共价有机超环笼确立为长寿命ZIBs的变革性平台,通过结构限制和动态可回收性为抑制穿梭效应和电极可持续性提供了双重解决方案。