Suppr超能文献

用于量化多发性硬化症铜剥夺小鼠模型中髓鞘含量的数据驱动多组分T2分析的验证

Validation of a data-driven multicomponent T2 analysis for quantifying myelin content in the cuprizone mouse model of multiple sclerosis.

作者信息

Omer Noam, Wilczynski Ella, Zlotzover Sharon, Helft Coral, Blumenfeld-Katzir Tamar, Ben-Eliezer Noam

机构信息

Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel.

Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.

出版信息

PLoS One. 2025 May 21;20(5):e0323614. doi: 10.1371/journal.pone.0323614. eCollection 2025.

Abstract

BACKGROUND

Myelin quantification is essential for understanding a wide range of neurodegenerative pathologies. Voxel-wise multicomponent T2 (mcT2) analysis is the common approach for this purpose, yet no gold standard technique exist that can overcome the ambiguity of fitting several T2 components to a single-voxel signal. This challenge is further exacerbated in preclinical scan settings due to the addition of spurious diffusion encoding, resulting from the use of imaging gradients that are at least an order of magnitude larger than on typical clinical scanners.

PURPOSE

Assess the utility of a new data-driven approach for mcT2 analysis, which utilizes information from the entire tissue to analyze the signal from each voxel in healthy and demyelinated tissues. Specifically, this algorithm uses statistical analysis of the entire anatomy to identify tissue-specific multi-T2 signal combinations, and then uses these as basis-functions for voxel-wise mcT2 fitting.

METHODS

Data-driven mcT2 analysis was performed on N = 7 cuprizone mice and N = 7 healthy mice. Myelin water fraction (MWF) values at six brain regions were evaluated. Correlation with reference immunohistochemical (IHC) staining for myelin basic protein was done in the corpus callosum. To demonstrate the added value of the data-driven approach the analysis was performed twice - with and without the data-driven preprocessing step.

RESULTS

Strong agreement was obtained between data-driven MWF values and histology. Applying the data-driven analysis prior to the voxel-wise fitting improved the mapping accuracy vs. non data-driven analysis, producing statistically significant separation between the two mice groups, good groupwise linear correlation with histology (cuprizone: R² = 0.64, p < 0.05, control: R2 = 0.61, p < 0.05), and addressed the inherent ambiguity, characterizing conventional mcT2 fitting.

CONCLUSION

The proposed data-driven algorithm provides a reliable tool for mapping myelin content on preclinical scanners, allowing precise classification between healthy and demyelinated tissues in cuprizone mouse model of multiple sclerosis.

摘要

背景

髓鞘定量对于理解多种神经退行性病变至关重要。基于体素的多组分T2(mcT2)分析是实现这一目的的常用方法,但目前尚无金标准技术能够克服将多个T2组分拟合到单一体素信号时的模糊性。在临床前扫描设置中,由于添加了虚假扩散编码,这一挑战进一步加剧,虚假扩散编码是由使用比典型临床扫描仪至少大一个数量级的成像梯度导致的。

目的

评估一种用于mcT2分析的新数据驱动方法的效用,该方法利用来自整个组织的信息来分析健康组织和脱髓鞘组织中每个体素的信号。具体而言,该算法使用对整个解剖结构的统计分析来识别组织特异性的多T2信号组合,然后将这些组合用作基于体素的mcT2拟合的基函数。

方法

对7只服用双环己酮草酰二腙的小鼠和7只健康小鼠进行数据驱动的mcT2分析。评估了六个脑区的髓鞘水分数(MWF)值。在胼胝体中进行了与髓鞘碱性蛋白的参考免疫组织化学(IHC)染色的相关性分析。为了证明数据驱动方法的附加价值,分析进行了两次——一次有数据驱动预处理步骤,一次没有数据驱动预处理步骤。

结果

数据驱动的MWF值与组织学结果之间取得了高度一致性。在基于体素的拟合之前应用数据驱动分析相比于非数据驱动分析提高了映射精度,在两组小鼠之间产生了具有统计学意义的分离,与组织学具有良好的组间线性相关性(双环己酮草酰二腙组:R² = 0.64,p < 0.05,对照组:R² = 0.61,p < 0.05),并解决了传统mcT2拟合固有的模糊性。

结论

所提出的数据驱动算法为在临床前扫描仪上绘制髓鞘含量提供了一种可靠的工具,能够在多发性硬化症的双环己酮草酰二腙小鼠模型中对健康组织和脱髓鞘组织进行精确分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3fa/12094733/71da70635339/pone.0323614.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验