Wen Yutong, Choo Vin Yeang, Eil Jan Horst, Thun Sylvia, Pinto Dos Santos Daniel, Kast Johannes, Sigle Stefan, Prokosch Hans-Ulrich, Ovelgönne Diana Lizzhaid, Borys Katarzyna, Kohnke Judith, Arzideh Kamyar, Winnekens Philipp, Baldini Giulia, Schmidt Cynthia Sabrina, Haubold Johannes, Nensa Felix, Pelka Obioma, Hosch René
Data Integration Center, Central IT Department, University Hospital Essen, Essen, Germany.
Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, Essen, Germany.
J Med Internet Res. 2025 May 21;27:e68750. doi: 10.2196/68750.
Fast Healthcare Interoperability Resources (FHIR) is a widely used standard for storing and exchanging health care data. At the same time, image-based artificial intelligence (AI) models for quantifying relevant body structures and organs from routine computed tomography (CT)/magnetic resonance imaging scans have emerged. The missing link, simultaneously a needed step in advancing personalized medicine, is the incorporation of measurements delivered by AI models into an interoperable and standardized format. Incorporating image-based measurements and biomarkers into FHIR profiles can standardize data exchange, enabling timely, personalized treatment decisions and improving the precision and efficiency of patient care.
This study aims to present the synergistic incorporation of CT-derived body organ and composition measurements with FHIR, delineating an initial paradigm for storing image-based biomarkers.
This study integrated the results of the Body and Organ Analysis (BOA) model into FHIR profiles to enhance the interoperability of image-based biomarkers in radiology. The BOA model was selected as an exemplary AI model due to its ability to provide detailed body composition and organ measurements from CT scans. The FHIR profiles were developed based on 2 primary observation types: Body Composition Analysis (BCA Observation) for quantitative body composition metrics and Body Structure Observation for organ measurements. These profiles were structured to interoperate with a specially designed Diagnostic Report profile, which references the associated Imaging Study, ensuring a standardized linkage between image data and derived biomarkers. To ensure interoperability, all labels were mapped to SNOMED CT (Systematized Nomenclature of Medicine - Clinical Terms) or RadLex terminologies using specific value sets. The profiles were developed using FHIR Shorthand (FSH) and SUSHI, enabling efficient definition and implementation guide generation, ensuring consistency and maintainability.
In this study, 4 BOA profiles, namely, Body Composition Analysis Observation, Body Structure Volume Observation, Diagnostic Report, and Imaging Study, have been presented. These FHIR profiles, which cover 104 anatomical landmarks, 8 body regions, and 8 tissues, enable the interoperable usage of the results of AI segmentation models, providing a direct link between image studies, series, and measurements.
The BOA profiles provide a foundational framework for integrating AI-derived imaging biomarkers into FHIR, bridging the gap between advanced imaging analytics and standardized health care data exchange. By enabling structured, interoperable representation of body composition and organ measurements, these profiles facilitate seamless integration into clinical and research workflows, supporting improved data accessibility and interoperability. Their adaptability allows for extension to other imaging modalities and AI models, fostering a more standardized and scalable approach to using imaging biomarkers in precision medicine. This work represents a step toward enhancing the integration of AI-driven insights into digital health ecosystems, ultimately contributing to more data-driven, personalized, and efficient patient care.
快速医疗保健互操作性资源(FHIR)是一种广泛用于存储和交换医疗保健数据的标准。与此同时,用于从常规计算机断层扫描(CT)/磁共振成像扫描中量化相关身体结构和器官的基于图像的人工智能(AI)模型已经出现。缺失的环节,同时也是推进个性化医疗所需的一步,是将AI模型提供的测量结果纳入可互操作的标准化格式。将基于图像的测量结果和生物标志物纳入FHIR配置文件可以规范数据交换,实现及时、个性化的治疗决策,并提高患者护理的精度和效率。
本研究旨在展示将CT衍生的身体器官和成分测量结果与FHIR协同整合,描绘一种存储基于图像的生物标志物的初始范式。
本研究将身体和器官分析(BOA)模型的结果整合到FHIR配置文件中,以增强放射学中基于图像的生物标志物的互操作性。由于BOA模型能够从CT扫描中提供详细的身体成分和器官测量结果,因此被选为示例AI模型。FHIR配置文件基于2种主要观察类型开发:用于定量身体成分指标的身体成分分析(BCA观察)和用于器官测量的身体结构观察。这些配置文件的结构设计为与专门设计的诊断报告配置文件进行互操作,该诊断报告配置文件引用相关的影像研究,确保图像数据与衍生生物标志物之间的标准化链接。为确保互操作性,所有标签都使用特定值集映射到SNOMED CT(医学系统命名法 - 临床术语)或RadLex术语。这些配置文件使用FHIR速记法(FSH)和SUSHI开发,能够高效生成定义和实施指南,确保一致性和可维护性。
在本研究中,展示了4个BOA配置文件,即身体成分分析观察、身体结构体积观察、诊断报告和影像研究。这些FHIR配置文件涵盖104个解剖标志、8个身体区域和8种组织,实现了AI分割模型结果的可互操作使用,在图像研究、系列和测量之间提供了直接链接。
BOA配置文件为将AI衍生的影像生物标志物整合到FHIR中提供了基础框架,弥合了先进影像分析与标准化医疗保健数据交换之间的差距。通过实现身体成分和器官测量的结构化、可互操作表示,这些配置文件便于无缝集成到临床和研究工作流程中,支持提高数据可访问性和互操作性。它们的适应性允许扩展到其他成像模态和AI模型,促进在精准医学中使用影像生物标志物的更标准化和可扩展方法。这项工作代表了朝着将AI驱动的见解更好地整合到数字健康生态系统迈出的一步,最终有助于实现更数据驱动、个性化和高效的患者护理。