Suppr超能文献

通过真菌-细菌共培养提高生物源氧化锰的产量及去除Cd(II)和环丙沙星

Enhanced biogenic manganese oxide production and the removal of Cd(II) and ciprofloxacin via fungus-bacterium co-cultivation.

作者信息

Wang Mei, Xu Zuxin, Qiu Jingjing, Dong Bin

机构信息

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China.

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China.

出版信息

Environ Res. 2025 Sep 1;280:121899. doi: 10.1016/j.envres.2025.121899. Epub 2025 May 19.

Abstract

Microbial co-cultivation is a promising strategy for enhancing metabolite production and functional capabilities. While most research on biogenic manganese (Mn) oxidation (BMO) has focused on individual bacterial or fungal strains, the potential benefits of fungal-bacterial co-cultivation remain largely unexplored. In this study, the synergistic effects of co-culturing the Mn-oxidizing fungus Cladosporium sp. XM01 with the Mn-oxidizing bacterium Bacillus sp. XM02 on Mn(II) oxidation were systematically investigated. The results showed that co-cultivation significantly increased total cell biomass and enhanced Mn(II) removal. Optimal conditions were achieved by introducing strain XM02 with a 36 h delay and maintaining a co-culturing ratio of 2:1 (XM01:XM02). The enhanced Mn(II) oxidation observed in the co-culture system was attributed to increased activities of superoxide dismutase and catalase, which help maintain redox homeostasis and sustain the production of superoxide-an essential oxidant in Mn(II) bio-oxidation. Scanning electron microscopy revealed that Bacillus sp. XM02 cells were attached to the hyphae of Cladosporium sp. XM01, forming structured fungal-bacterial aggregates. These aggregates suggest strong physical interactions that likely facilitated nutrient exchange and metabolic cooperation. Additionally, removal kinetics experiments showed that BMO produced in the co-culture exhibited superior Cd(II) adsorption capacity and ciprofloxacin oxidation performance compared to BMO derived from pure cultures. This enhancement was linked to the higher specific surface area and increased average oxidation state (Mn-AOS) of the co-culture BMO, which enhanced its adsorption and oxidative reactivity. These findings provide new insights into the symbiotic interactions among Mn-oxidizing microorganisms and highlight the potential of fungal-bacterial co-cultures as an effective strategy to enhance BMO functionality for environmental remediation.

摘要

微生物共培养是提高代谢产物产量和功能能力的一种有前景的策略。虽然大多数关于生物源锰(Mn)氧化(BMO)的研究都集中在单个细菌或真菌菌株上,但真菌 - 细菌共培养的潜在益处仍 largely未被探索。在本研究中,系统地研究了锰氧化真菌枝孢菌属XM01与锰氧化细菌芽孢杆菌属XM02共培养对Mn(II)氧化的协同作用。结果表明,共培养显著增加了总细胞生物量并增强了Mn(II)的去除。通过延迟36小时引入菌株XM02并保持2:1(XM01:XM02)的共培养比例实现了最佳条件。在共培养系统中观察到的增强的Mn(II)氧化归因于超氧化物歧化酶和过氧化氢酶活性的增加,这有助于维持氧化还原稳态并维持超氧化物的产生——超氧化物是Mn(II)生物氧化中的一种必需氧化剂。扫描电子显微镜显示,芽孢杆菌属XM02细胞附着在枝孢菌属XM01的菌丝上,形成结构化的真菌 - 细菌聚集体。这些聚集体表明存在强烈的物理相互作用,这可能促进了营养物质交换和代谢合作。此外,去除动力学实验表明,与纯培养物产生的BMO相比,共培养中产生的BMO表现出优异的Cd(II)吸附能力和环丙沙星氧化性能。这种增强与共培养BMO的更高比表面积和增加的平均氧化态(Mn - AOS)有关,这增强了其吸附和氧化反应性。这些发现为锰氧化微生物之间的共生相互作用提供了新的见解,并突出了真菌 - 细菌共培养作为增强BMO功能用于环境修复的有效策略的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验