Xu Weijiao, Yang Haitang, Yao Feng
Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Department of Thoracic Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China.
J Thorac Dis. 2025 Apr 30;17(4):2321-2338. doi: 10.21037/jtd-2024-2015. Epub 2025 Apr 23.
Cancer-associated fibroblasts (CAFs) are pivotal regulators of the tumor immune microenvironment, shaping immune responses and influencing therapeutic outcomes. While previous studies have predominantly focused on CAF subpopulations that impair responses to immune checkpoint inhibitors (ICIs), CAF subsets associated with favorable ICIs responses in lung adenocarcinoma (LUAD) remain underexplored. In this study, we integrated bulk RNA and single-cell RNA sequencing data from LUAD samples to identify CAF subpopulations relevant to ICIs efficacy.
Using a machine learning-driven approach, we developed a robust immune response signature based on this antigen-presenting CAFs (apCAFs) subset to predict ICIs responses.
We uncovered a novel subset of apCAFs exhibiting macrophage-like features, characterized by the expression of major histocompatibility complex (MHC) class II, CD74, and costimulatory molecules (CD80, CD86, CD83, and CD40). This subset, distinct from classic apCAFs described in other cancer types, is strongly associated with favorable ICIs responses across multiple datasets. Notably, these macrophage-like apCAFs are present in LUAD samples prior to treatment, although their abundance varies among individuals. Patients classified as high-risk using signature calculated by a machine learning-driven approach exhibited lower overall survival rates and diminished immune cell infiltration following ICIs therapy.
Collectively, our findings establish a critical link between macrophage-like apCAFs and ICIs efficacy, offering a clinically applicable signature for patient stratification and guiding therapeutic strategies targeting the tumor microenvironment.
癌症相关成纤维细胞(CAFs)是肿瘤免疫微环境的关键调节因子,塑造免疫反应并影响治疗结果。虽然先前的研究主要集中在损害对免疫检查点抑制剂(ICIs)反应的CAF亚群,但在肺腺癌(LUAD)中与ICIs良好反应相关的CAF亚群仍未得到充分探索。在本研究中,我们整合了来自LUAD样本的大量RNA和单细胞RNA测序数据,以识别与ICIs疗效相关的CAF亚群。
我们采用机器学习驱动的方法,基于该抗原呈递CAFs(apCAFs)亚群开发了一种强大的免疫反应特征,以预测ICIs反应。
我们发现了一个具有巨噬细胞样特征的新型apCAFs亚群,其特征是主要组织相容性复合体(MHC)II类、CD74和共刺激分子(CD80、CD86、CD83和CD40)的表达。该亚群与其他癌症类型中描述的经典apCAFs不同,在多个数据集中与良好的ICIs反应密切相关。值得注意的是,这些巨噬细胞样apCAFs在治疗前的LUAD样本中就已存在,尽管其丰度在个体之间有所不同。使用机器学习驱动方法计算的特征分类为高危的患者,其总生存率较低,且在ICIs治疗后免疫细胞浸润减少。
总的来说,我们的研究结果建立了巨噬细胞样apCAFs与ICIs疗效之间的关键联系,为患者分层提供了一种临床适用的特征,并指导针对肿瘤微环境的治疗策略。