Suppr超能文献

单倍体冷冻胚胎移植活产结局的预测模型:逻辑回归与机器学习方法的比较分析

Predictive model for live birth outcomes in single euploid frozen embryo transfers: a comparative analysis of logistic regression and machine learning approaches.

作者信息

Abdala Andrea, Kalafat Erkan, Elkhatib Ibrahim, Bayram Aşina, Melado Laura, Fatemi Human, Nogueira Daniela

机构信息

IVF Department, ART Fertility Clinics, Abu Dhabi, United Arab Emirates.

Division of Reproductive Endocrinology and Infertility, Koc University School of Medicine, Istanbul, Turkey.

出版信息

J Assist Reprod Genet. 2025 May 22. doi: 10.1007/s10815-025-03524-3.

Abstract

PURPOSE

To develop and validate a predictive model for live birth (LB) outcomes in single euploid frozen embryo transfers (seFET) based on patient's characteristics and embryo parameters.

METHODS

A retrospective cohort study was performed including 1979 seFET performed between March 2017 and December 2023. Prediction models were built using logistic regression (LR), random forest classifier (RFC), support vector machines (SVM), and a gradient booster (XGBoost). Considered variables associated with LB outcomes were blastocyst expansion, blastocyst inner cell mass (ICM) and TE quality, day (D) of TE biopsy (D5, D6, and D7), female age and body mass index (BMI), distance from the uterine fundus at embryo transfer, endometrial preparation as natural cycles (NC) or hormonal replacement therapy (HRT), and endometrial thickness. Model performance was evaluated using area under the precision-recall curve and calibration metrics.

RESULTS

Variables that were negatively associated with LB rate were BMI (OR = 0.79 [0.64-0.96], P = 0.020 for overweight and OR = 0.76 [0.60-0.95], P = 0.015 for obese class I/II), ICM grade B (OR = 0.72 [0.57-0.90], P = 0.005) or C (OR = 0.21 [0.15-0.30], P < 0.001), TE grade C (OR = 0.32 [0.24-0.43], P < 0.001), and blastocyst biopsied on D6 (OR = 0.66 [0.55-0.80], P < 0.001 or D7 (OR = 0.19[0.09-0.37], P < 0.001). The LR model was the best in terms of overall classification performance (C-statistics: 0.626 ± 0.018 vs. 0.606 ± 0.018, 0.581 ± 0.018, 0.601 ± 0.017, LR vs. RFC, XGBoost, and SVM, respectively, P < 0.001). A prediction model of LB outcome was developed and is free to access: https://artfertilityclinics.shinyapps.io/ABLE/ .

CONCLUSION

LR demonstrated a stable validation performance and superior LB prediction, aiding as a predictive tool for patient counselling and assessing success in seFET cycles.

摘要

目的

基于患者特征和胚胎参数,开发并验证单倍体冷冻胚胎移植(seFET)活产(LB)结局的预测模型。

方法

进行了一项回顾性队列研究,纳入2017年3月至2023年12月期间进行的1979次seFET。使用逻辑回归(LR)、随机森林分类器(RFC)、支持向量机(SVM)和梯度提升器(XGBoost)构建预测模型。与LB结局相关的变量包括囊胚扩张、囊胚内细胞团(ICM)和滋养外胚层(TE)质量、TE活检日(D)(D5、D6和D7)、女性年龄和体重指数(BMI)、胚胎移植时距子宫底的距离、子宫内膜准备方式为自然周期(NC)或激素替代疗法(HRT)以及子宫内膜厚度。使用精确召回率曲线下面积和校准指标评估模型性能。

结果

与LB率呈负相关的变量有BMI(超重时OR = 0.79 [0.64 - 0.96],P = 0.020;I/II级肥胖时OR = 0.76 [0.60 - 0.95],P = 0.015)、ICM B级(OR = 0.72 [0.57 - 0.90],P = 0.005)或C级(OR = 0.21 [0.15 - 0.30],P < 0.001)、TE C级(OR = 0.32 [0.24 - 0.43],P < 0.001)以及在D6进行活检的囊胚(OR = 0.66 [0.55 - 0.80],P < 0.001)或D7(OR = 0.19[0.09 - 0.37],P < 0.001)。就总体分类性能而言,LR模型最佳(C统计量:0.626 ± 0.018,分别与RFC、XGBoost和SVM的0.606 ± 0.018、0.581 ± 0.018、0.601 ± 0.017相比,P < 0.001)。开发了一个LB结局预测模型,可免费访问:https://artfertilityclinics.shinyapps.io/ABLE/

结论

LR显示出稳定的验证性能和卓越的LB预测能力,有助于作为患者咨询和评估seFET周期成功率的预测工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验