Suppr超能文献

多模态脑电图-经颅多普勒脑机接口中基于滤波器组公共空间模式和包络的特征

Filter bank common spatial pattern and envelope-based features in multimodal EEG-fTCD brain-computer interfaces.

作者信息

Essam Alaa-Allah, Ibrahim Ammar, Seif Al-Nasr Ashar, El-Saqa Mariam, Mohamed Sohila, Anwar Ayman, Eldeib Ayman, Akcakaya Murat, Khalaf Aya

机构信息

Biomedical Engineering and Systems Department, Faculty of Engineering, Cairo University, Giza, Egypt.

Department of Electrical and Computer Engineering, University of Toronto, Ontario, Canada.

出版信息

PLoS One. 2025 May 22;20(5):e0311075. doi: 10.1371/journal.pone.0311075. eCollection 2025.

Abstract

Brain-computer interfaces (BCIs) provide alternative means of communication and control for individuals with severe motor or speech impairments. Multimodal BCIs have been introduced recently to enhance the performance of BCIs utilizing single modality. In this paper, we aim to advance the state of the art in multimodal BCIs combining Electroencephalography (EEG) and functional transcranial Doppler ultrasound (fTCD) by introducing advanced analysis approaches that enhance system performance. Our EEG-fTCD BCIs employ two distinct paradigms to infer user intent: motor imagery (MI) and flickering mental rotation (MR)/word generation (WG) paradigms. In the MI paradigm, we introduce the use of Filter Bank Common Spatial Pattern (FBCSP) for the first time in an EEG-fTCD BCI, while in the flickering MR/WG paradigm, we extend FBCSP application to non-motor imagery tasks. Additionally, we extract previously unexplored time-series features from the envelope of fTCD signals, leveraging richer information from cerebral blood flow dynamics. Furthermore, we employ a Bayesian fusion framework that allows EEG and fTCD to contribute unequally to decision-making. The multimodal EEG-fTCD system achieved high classification accuracies across tasks in both paradigms. In the MI paradigm, accuracies of 94.53%, 94.9%, and 96.29% were achieved for left arm MI vs. baseline, right arm MI vs. baseline, and right arm MI vs. left arm MI, respectively - outperforming EEG-only accuracy by 3.87%, 3.80%, and 5.81%, respectively. In the MR/WG paradigm, the system achieved 95.27%, 85.93%, and 96.97% for MR vs. baseline, WG vs. baseline, and MR vs. WG, respectively, showing accuracy improvements of 2.28%, 4.95%, and 1.56%, respectively compared to EEG-only results. Overall, the proposed analysis approach improved classification accuracy for 5 out of 6 binary classification problems within the MI and MR/WG paradigms, with gains ranging from 0.64% to 9% compared to our previous EEG-fTCD studies. Additionally, our results demonstrate that EEG-fTCD BCIs with the proposed analysis techniques outperform multimodal EEG-fNIRS BCIs in both accuracy and speed, improving classification performance by 2.7% to 24.7% and reducing trial durations by 2-38 seconds. These findings highlight the potential of the proposed approach to advance assistive technologies and improve patient quality of life.

摘要

脑机接口(BCIs)为严重运动或言语障碍患者提供了交流和控制的替代方式。最近引入了多模态脑机接口,以提高单模态脑机接口的性能。在本文中,我们旨在通过引入提高系统性能的先进分析方法,推动结合脑电图(EEG)和功能性经颅多普勒超声(fTCD)的多模态脑机接口的技术发展。我们的脑电图 - 经颅多普勒超声脑机接口采用两种不同的范式来推断用户意图:运动想象(MI)和闪烁心理旋转(MR)/单词生成(WG)范式。在运动想象范式中,我们首次在脑电图 - 经颅多普勒超声脑机接口中使用滤波器组公共空间模式(FBCSP),而在闪烁心理旋转/单词生成范式中,我们将FBCSP的应用扩展到非运动想象任务。此外,我们从经颅多普勒超声信号的包络中提取了以前未探索的时间序列特征,利用了来自脑血流动力学的更丰富信息。此外,我们采用了一种贝叶斯融合框架,允许脑电图和经颅多普勒超声在决策中发挥不同的作用。多模态脑电图 - 经颅多普勒超声系统在两种范式的各项任务中均实现了高分类准确率。在运动想象范式中,左臂运动想象与基线相比、右臂运动想象与基线相比以及右臂运动想象与左臂运动想象相比的准确率分别达到了94.53%、94.9%和96.29%,分别比仅使用脑电图的准确率高出3.87%、3.80%和5.81%。在心理旋转/单词生成范式中,系统在心理旋转与基线相比、单词生成与基线相比以及心理旋转与单词生成相比的准确率分别为95.27%、85.93%和96.97%,与仅使用脑电图的结果相比,准确率分别提高了2.28%、4.95%和1.56%。总体而言,所提出的分析方法在运动想象和心理旋转/单词生成范式中的6个二分类问题中有5个提高了分类准确率,与我们之前的脑电图 - 经颅多普勒超声研究相比,提高幅度在0.64%至9%之间。此外,我们的结果表明,采用所提出分析技术的脑电图 - 经颅多普勒超声脑机接口在准确性和速度方面均优于多模态脑电图 - 近红外光谱脑机接口,分类性能提高了2.7%至24.7%,试验持续时间减少了2 - 38秒。这些发现突出了所提出方法在推进辅助技术和改善患者生活质量方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb79/12097611/3a77e8751c1d/pone.0311075.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验