J Neural Eng. 2019 Jun;16(3):036014. doi: 10.1088/1741-2552/ab0b7f. Epub 2019 Feb 28.
We aim at developing a hybrid brain-computer interface that utilizes electroencephalography (EEG) and functional transcranial Doppler (fTCD). In this hybrid BCI, EEG and fTCD are used simultaneously to measure electrical brain activity and cerebral blood velocity respectively in response to flickering mental rotation (MR) and word generation (WG) tasks. In this paper, we improve both the accuracy and information transfer rate (ITR) of this novel hybrid brain computer interface (BCI) we designed in our previous work.
To achieve such aim, we extended our feature extraction approach through using template matching and multi-scale analysis to extract EEG and fTCD features, respectively. In particular, template matching was used to analyze EEG data whereas 5-level wavelet decomposition was applied to fTCD data. Significant EEG and fTCD features were selected using Wilcoxon signed rank test. Support vector machines classifier (SVM) was used to project EEG and fTCD selected features of each trial into scalar SVM scores. Moreover, instead of concatenating EEG and fTCD feature vectors corresponding to each trial, we proposed a Bayesian fusion approach of EEG and fTCD evidences.
Average accuracy and average ITR of 98.11% and 21.29 bits min were achieved for WG versus MR classification while MR versus baseline yielded 86.27% average accuracy and 8.95 bit min average ITR. In addition, average accuracy of 85.29% and average ITR of 8.34 bits min were obtained for WG versus baseline.
The proposed analysis techniques significantly improved the hybrid BCI performance. Specifically, for MR/WG versus baseline problems, we achieved twice of the ITRs obtained in our previous study. Moreover, the ITR of WG versus MR problem is 4-times the ITR we obtained before for the same problem. The current analysis methods boosted the performance of our EEG-fTCD BCI such that it outperformed the existing EEG-fNIRS BCIs in comparison.
我们旨在开发一种结合脑电(EEG)和功能 transcranial 多普勒(fTCD)的混合脑机接口。在这种混合 BCI 中,同时使用 EEG 和 fTCD 分别测量闪烁性心理旋转(MR)和文字生成(WG)任务引起的脑电活动和脑血流速度。在本文中,我们改进了我们之前工作中设计的新型混合脑机接口(BCI)的准确性和信息传输率(ITR)。
为了实现这一目标,我们通过使用模板匹配和多尺度分析分别提取 EEG 和 fTCD 特征,扩展了我们的特征提取方法。具体来说,模板匹配用于分析 EEG 数据,而 5 级小波分解则应用于 fTCD 数据。使用 Wilcoxon 符号秩检验选择显著的 EEG 和 fTCD 特征。支持向量机分类器(SVM)用于将每个试验的 EEG 和 fTCD 选择特征投影到标量 SVM 得分中。此外,我们提出了一种 EEG 和 fTCD 证据的贝叶斯融合方法,而不是将每个试验对应的 EEG 和 fTCD 特征向量串联起来。
在 WG 与 MR 分类中,达到了 98.11%的平均准确率和 21.29 bit min 的平均 ITR,而 MR 与基线的平均准确率为 86.27%,平均 ITR 为 8.95 bit min。此外,在 WG 与基线的分类中,平均准确率为 85.29%,平均 ITR 为 8.34 bit min。
所提出的分析技术显著提高了混合 BCI 的性能。具体来说,对于 MR/WG 与基线问题,我们获得了之前研究中 ITR 的两倍。此外,WG 与 MR 问题的 ITR 是我们之前针对同一问题获得的 ITR 的四倍。当前的分析方法提高了我们的 EEG-fTCD BCI 的性能,使其在比较中优于现有的 EEG-fNIRS BCI。