Suppr超能文献

人工智能与机器学习创新助力改善肿瘤学临床试验的设计与代表性

Artificial Intelligence and Machine Learning Innovations to Improve Design and Representativeness in Oncology Clinical Trials.

作者信息

Azenkot Tali, Rivera Donna R, Stewart Mark D, Patel Sandip P

机构信息

University of California at San Diego Moores Cancer Center, La Jolla, CA.

Oncology Center of Excellence, US Food and Drug Administration, Silver Springs, MD.

出版信息

Am Soc Clin Oncol Educ Book. 2025 Jun;45(3):e473590. doi: 10.1200/EDBK-25-473590. Epub 2025 May 22.

Abstract

The integration of artificial intelligence (AI) and machine learning (ML) in oncology clinical trials is rapidly evolving alongside the broader field. For example, AI-driven adaptive trial designs may allow for real-time modifications based on emerging safety and efficacy signals, enabling more responsive and efficient trials. AI-powered diagnostic tools, including radiomics, computational pathology, and spatial omics, can improve trial patient selection and response assessments. ML-based patient outcome simulations can similarly enhance patient stratification strategies and statistical power. Application of AI can also improve the accessibility of real-world data, including opportunities to enhance data extraction, standardization, and harmonization of data from routine clinical practice. Data generated from digital health technologies (eg, wearable devices, electronic sensors, computing platforms, software applications) may enable a more comprehensive understanding of patient populations to support clinical trials from enrollment to assessment. Automation of trial operations and data management can also improve data fidelity and decrease investigator burden, which has the potential to streamline trial execution and increase potential use of decentralization. There are ongoing efforts to enhance regulatory clarity, mitigate bias, and uphold ethical use of these novel technologies. In this article, we review use cases of AI and ML in oncology clinical trials, including their role in patient recruitment, trial design and operations, data management, and diagnostics. Although these technologies can have applications across all phases of drug development including early discovery, we focus on phase II and III trials, where AI and ML may have a pronounced ability to enhance trial efficiency, patient stratification, and regulatory decision making. By integrating AI and ML, clinical trials can become more adaptive, data-driven, and inclusive in the pursuit of improving patient outcomes.

摘要

人工智能(AI)和机器学习(ML)在肿瘤学临床试验中的整合正随着更广泛的领域迅速发展。例如,人工智能驱动的适应性试验设计可能允许根据新出现的安全性和有效性信号进行实时调整,从而实现更具响应性和高效性的试验。人工智能驱动的诊断工具,包括放射组学、计算病理学和空间组学,可以改善试验患者的选择和反应评估。基于机器学习的患者预后模拟同样可以增强患者分层策略和统计功效。人工智能的应用还可以提高真实世界数据的可及性,包括增强数据提取、标准化以及整合来自常规临床实践数据的机会。数字健康技术(如可穿戴设备、电子传感器、计算平台、软件应用程序)产生的数据可能有助于更全面地了解患者群体,以支持从入组到评估的临床试验。试验操作和数据管理的自动化还可以提高数据保真度并减轻研究者负担,这有可能简化试验执行并增加去中心化的潜在应用。目前正在努力提高监管清晰度、减轻偏差并坚持对这些新技术的道德使用。在本文中,我们回顾了人工智能和机器学习在肿瘤学临床试验中的应用案例,包括它们在患者招募、试验设计与操作、数据管理和诊断中的作用。尽管这些技术可应用于药物开发的所有阶段,包括早期发现,但我们重点关注II期和III期试验,在这些试验中,人工智能和机器学习可能具有显著提高试验效率、患者分层和监管决策的能力。通过整合人工智能和机器学习,临床试验在追求改善患者预后方面可以变得更具适应性、数据驱动性和包容性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验