Koseki Jun, Motono Chie, Yanagisawa Keisuke, Kudo Genki, Yoshino Ryunosuke, Hirokawa Takatsugu, Imai Kenichiro
Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan.
Integrated Research Center for Self-Care Technology (irc-sct), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan.
J Chem Inf Model. 2025 Jun 9;65(11):5567-5575. doi: 10.1021/acs.jcim.4c02111. Epub 2025 May 22.
Some functional proteins undergo conformational changes to expose hidden binding sites when a binding molecule approaches their surface. Such binding sites are called cryptic sites and are important targets for drug discovery. However, it is still difficult to correctly predict cryptic sites. Therefore, we introduce an advanced method, CrypToth, for the precise identification of cryptic sites utilizing the topological data analysis such as persistent homology method. This method integrates topological data analysis and mixed-solvent molecular dynamics (MSMD) simulations. To identify hotspots corresponding to cryptic sites, we conducted MSMD simulations using six probes with different chemical properties: dimethyl ether, benzene, phenol, methyl imidazole, acetonitrile, and ethylene glycol. Subsequently, we applied our topological data analysis method to rank hotspots based on the possibility of harboring cryptic sites. Evaluation of CrypToth using nine target proteins containing well-defined cryptic sites revealed its superior performance compared with recent machine-learning methods. As a result, in seven of nine cases, hotspots associated with cryptic sites were ranked the highest. CrypToth can explore hotspots on the protein surface favorable to ligand binding using MSMD simulations with six different probes and then identify hotspots corresponding to cryptic sites by assessing the protein's conformational variability using the topological data analysis. This synergistic approach facilitates the prediction of cryptic sites with a high accuracy.
当结合分子接近某些功能蛋白的表面时,这些蛋白会发生构象变化以暴露隐藏的结合位点。这种结合位点被称为隐蔽位点,是药物发现的重要靶点。然而,正确预测隐蔽位点仍然很困难。因此,我们引入了一种先进的方法——CrypToth,用于利用诸如持久同调方法等拓扑数据分析精确识别隐蔽位点。该方法整合了拓扑数据分析和混合溶剂分子动力学(MSMD)模拟。为了识别与隐蔽位点相对应的热点,我们使用六种具有不同化学性质的探针进行了MSMD模拟:二甲醚、苯、苯酚、甲基咪唑、乙腈和乙二醇。随后,我们应用拓扑数据分析方法根据存在隐蔽位点的可能性对热点进行排序。使用九个含有明确隐蔽位点的靶蛋白对CrypToth进行评估,结果显示其性能优于最近的机器学习方法。结果,在九个案例中的七个中,与隐蔽位点相关的热点排名最高。CrypToth可以通过使用六种不同探针的MSMD模拟探索蛋白质表面有利于配体结合的热点,然后通过使用拓扑数据分析评估蛋白质的构象变异性来识别与隐蔽位点相对应的热点。这种协同方法有助于高精度地预测隐蔽位点。