Gain Therapeutics, Parc Cientific de Barcelona, Baldiri Reixac 10, 08029 Barcelona, Spain.
Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain.
Curr Drug Discov Technol. 2022;19(2):62-68. doi: 10.2174/1570163819666211223162829.
Mixed solvents MD (MDmix) simulations have proved to be a useful and increasingly accepted technique with several applications in structure-based drug discovery. One of the assumptions behind the methodology is the transferability of free energy values from the simulated cosolvent molecules to larger drug-like molecules. However, the binding free energy maps (ΔGbind) calculated for the different moieties of the cosolvent molecules (e.g. a hydroxyl map for the ethanol) are largely influenced by the rest of the solvent molecule and do not reflect the intrinsic affinity of the moiety in question. As such, they are hardly transferable to different molecules.
To achieve transferable energies, we present here a method for decomposing the molecular binding free energy into accurate atomic contributions.
We demonstrate with two qualitative visual examples how the corrected energy maps better match known binding hotspots and how they can reveal hidden hotspots with actual drug design potential.
Atomic decomposition of binding free energies derived from MDmix simulations provides transferable and quantitative binding free energy maps.
混合溶剂 MD(MDmix)模拟已被证明是一种有用且越来越被接受的技术,在基于结构的药物发现中有多种应用。该方法背后的假设之一是,可以将模拟共溶剂分子的自由能值转移到更大的类药性分子上。然而,共溶剂分子的不同部分(例如乙醇的羟基图谱)的计算出的结合自由能图谱(ΔGbind)在很大程度上受到溶剂分子其余部分的影响,并且不能反映出有关部分的固有亲和力。因此,它们几乎无法转移到其他分子上。
为了实现可转移的能量,我们在这里提出了一种将分子结合自由能分解为精确原子贡献的方法。
我们通过两个定性的可视化示例展示了如何更正后的能量图谱更好地匹配已知的结合热点,以及它们如何揭示具有实际药物设计潜力的隐藏热点。
从 MDmix 模拟得出的结合自由能的原子分解提供了可转移且定量的结合自由能图谱。