Ódor Gergely, Karsai Márton
Department of Network and Data Science, Central European University, Vienna, Austria.
National Laboratory of Health Security, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary.
Nat Commun. 2025 May 22;16(1):4758. doi: 10.1038/s41467-025-59508-5.
Behavior-disease models suggest that pandemics can be contained cost-effectively if individuals take preventive actions when disease prevalence rises among their close contacts. However, assessing local awareness behavior in real-world datasets remains a challenge. Through the analysis of mutation patterns in clinical genetic sequence data, we propose an efficient approach to quantify the impact of local awareness by identifying superspreading events and assigning containment scores to them. We validate the proposed containment score as a proxy for local awareness in simulation experiments, and find that it was correlated positively with policy stringency during the COVID-19 pandemic. Finally, we observe a temporary drop in the containment score during the Omicron wave in the United Kingdom, matching a survey experiment we carried out in Hungary during the corresponding period of the pandemic. Our findings bring important insight into the field of awareness modeling through the analysis of large-scale genetic sequence data, one of the most promising data sources in epidemics research.
行为-疾病模型表明,如果个体在密切接触者中疾病流行率上升时采取预防措施,大流行病是可以以具有成本效益的方式得到控制的。然而,在现实世界的数据集中评估当地的认知行为仍然是一项挑战。通过对临床基因序列数据中的突变模式进行分析,我们提出了一种有效的方法,通过识别超级传播事件并为其分配控制分数来量化当地认知的影响。我们在模拟实验中验证了所提出的控制分数可作为当地认知的代理指标,并发现它与新冠疫情期间的政策严格程度呈正相关。最后,我们观察到英国在奥密克戎毒株流行期间控制分数出现了暂时下降,这与我们在疫情相应时期在匈牙利进行的一项调查实验结果相符。我们的研究结果通过对大规模基因序列数据的分析,为认知建模领域带来了重要见解,大规模基因序列数据是疫情研究中最有前景的数据来源之一。