Suppr超能文献

追踪新冠病毒进化过程中的统计挑战

Statistical Challenges in Tracking the Evolution of SARS-CoV-2.

作者信息

Cappello Lorenzo, Kim Jaehee, Liu Sifan, Palacios Julia A

机构信息

Departments of Economics and Business, Universitat Pompeu Fabra, 08005, Spain.

Department of Computational Biology, Cornell University, Ithaca, New York 14853, USA\.

出版信息

Stat Sci. 2022 May;37(2):162-182. doi: 10.1214/22-sts853. Epub 2022 May 16.

Abstract

Genomic surveillance of SARS-CoV-2 has been instrumental in tracking the spread and evolution of the virus during the pandemic. The availability of SARS-CoV-2 molecular sequences isolated from infected individuals, coupled with phylodynamic methods, have provided insights into the origin of the virus, its evolutionary rate, the timing of introductions, the patterns of transmission, and the rise of novel variants that have spread through populations. Despite enormous global efforts of governments, laboratories, and researchers to collect and sequence molecular data, many challenges remain in analyzing and interpreting the data collected. Here, we describe the models and methods currently used to monitor the spread of SARS-CoV-2, discuss long-standing and new statistical challenges, and propose a method for tracking the rise of novel variants during the epidemic.

摘要

对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的基因组监测在追踪该病毒在大流行期间的传播和进化方面发挥了重要作用。从感染个体中分离出的SARS-CoV-2分子序列,再结合系统发育动力学方法,为了解该病毒的起源、进化速率、引入时间、传播模式以及在人群中传播的新变种的出现提供了线索。尽管各国政府、实验室和研究人员在全球范围内做出了巨大努力来收集和测序分子数据,但在分析和解释所收集的数据方面仍存在许多挑战。在此,我们描述了目前用于监测SARS-CoV-2传播的模型和方法,讨论了长期存在的和新出现的统计挑战,并提出了一种在疫情期间追踪新变种出现的方法。

相似文献

1
Statistical Challenges in Tracking the Evolution of SARS-CoV-2.
Stat Sci. 2022 May;37(2):162-182. doi: 10.1214/22-sts853. Epub 2022 May 16.
2
Taxonium, a web-based tool for exploring large phylogenetic trees.
Elife. 2022 Nov 15;11:e82392. doi: 10.7554/eLife.82392.
3
Tracking SARS-CoV-2 introductions in Mozambique using pandemic-scale phylogenies: a retrospective observational study.
Lancet Glob Health. 2023 Jun;11(6):e933-e941. doi: 10.1016/S2214-109X(23)00169-9.
5
Patterns of within-host genetic diversity in SARS-CoV-2.
Elife. 2021 Aug 13;10:e66857. doi: 10.7554/eLife.66857.
6
Genomic Surveillance of SARS-CoV-2 in a University Community: Insights Into Tracking Variants, Transmission, and Spread of Gamma (P.1) Variant.
Open Forum Infect Dis. 2022 May 26;9(7):ofac268. doi: 10.1093/ofid/ofac268. eCollection 2022 Jul.
7
Comparative phylodynamics reveals the evolutionary history of SARS-CoV-2 emerging variants in the Arabian Peninsula.
Virus Evol. 2022 May 18;8(1):veac040. doi: 10.1093/ve/veac040. eCollection 2022.
10
The Evolution and Biology of SARS-CoV-2 Variants.
Cold Spring Harb Perspect Med. 2022 May 27;12(5):a041390. doi: 10.1101/cshperspect.a041390.

引用本文的文献

1
Epidemic-induced local awareness behavior inferred from surveys and genetic sequence data.
Nat Commun. 2025 May 22;16(1):4758. doi: 10.1038/s41467-025-59508-5.
2
Evolutionary and epidemic dynamics of COVID-19 in Germany exemplified by three Bayesian phylodynamic case studies.
Bioinform Biol Insights. 2025 Mar 12;19:11779322251321065. doi: 10.1177/11779322251321065. eCollection 2025.
3
adaPop: Bayesian inference of dependent population dynamics in coalescent models.
PLoS Comput Biol. 2023 Mar 20;19(3):e1010897. doi: 10.1371/journal.pcbi.1010897. eCollection 2023 Mar.
4
Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated with fitness.
Science. 2022 Jun 17;376(6599):1327-1332. doi: 10.1126/science.abm1208. Epub 2022 May 24.
5
Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated with fitness.
medRxiv. 2022 Feb 16:2021.09.07.21263228. doi: 10.1101/2021.09.07.21263228.

本文引用的文献

1
Statistical summaries of unlabelled evolutionary trees.
Biometrika. 2023 Apr 26;111(1):171-193. doi: 10.1093/biomet/asad025. eCollection 2024 Mar.
2
Fitting stochastic epidemic models to gene genealogies using linear noise approximation.
Ann Appl Stat. 2023 Mar;17(1):1-22. doi: 10.1214/21-aoas1583. Epub 2023 Jan 24.
4
Adaptive Preferential Sampling in Phylodynamics With an Application to SARS-CoV-2.
J Comput Graph Stat. 2022;31(2):541-552. doi: 10.1080/10618600.2021.1987256. Epub 2021 Nov 29.
5
A Bayesian approach to infer recombination patterns in coronaviruses.
Nat Commun. 2022 Jul 20;13(1):4186. doi: 10.1038/s41467-022-31749-8.
6
Deep learning from phylogenies to uncover the epidemiological dynamics of outbreaks.
Nat Commun. 2022 Jul 6;13(1):3896. doi: 10.1038/s41467-022-31511-0.
7
A computationally tractable birth-death model that combines phylogenetic and epidemiological data.
PLoS Comput Biol. 2022 Feb 11;18(2):e1009805. doi: 10.1371/journal.pcbi.1009805. eCollection 2022 Feb.
9
Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant.
N Engl J Med. 2021 Aug 12;385(7):585-594. doi: 10.1056/NEJMoa2108891. Epub 2021 Jul 21.
10
Untangling introductions and persistence in COVID-19 resurgence in Europe.
Nature. 2021 Jul;595(7869):713-717. doi: 10.1038/s41586-021-03754-2. Epub 2021 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验