Sanchez-Munoz Raul, Depaepe Thomas, Samalova Marketa, Hejatko Jan, Zaplana Isiah, Van Der Straeten Dominique
Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Gent, B-9000, Belgium.
Department of Agri-Food Engineering and Biotechnology (DEAB), Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Castelldefels, 08860, Barcelona, Spain.
Nat Commun. 2025 May 22;16(1):4778. doi: 10.1038/s41467-025-59542-3.
Understanding how plants adapt their physiology to overcome severe and often multifactorial stress conditions in nature is vital in light of the climate crisis. This remains a challenge given the complex nature of the underlying molecular mechanisms. To provide a comprehensive picture of stress-mitigation mechanisms, an exhaustive analysis of publicly available stress-related transcriptomic data has been conducted. We combine a meta-analysis with an unsupervised machine-learning algorithm to identify a core of stress-related genes active at 1-6 h and 12-24 h of exposure in Arabidopsis thaliana shoots and roots. To ensure robustness and biological significance of the output, often lacking in meta-analyses, a triple validation is incorporated. We present a 'stress gene core': a set of key genes involved in plant tolerance to ten adverse environmental conditions and ethylene-precursor supplementation rather than individual conditions. Notably, ethylene plays a key regulatory role in this core, influencing gene expression and acting as a critical factor in stress tolerance. Additionally, the analysis provides insights into previously uncharacterized genes, key genes within large families, and gene expression dynamics, which are used to create biologically validated databases that can guide further abiotic stress research. These findings establish a strong framework for advancing multi-stress-resilient crops, paving the way for sustainable agriculture in the face of climate challenges.
鉴于气候危机,了解植物如何调整其生理机能以克服自然界中严峻且往往是多因素的胁迫条件至关重要。鉴于潜在分子机制的复杂性,这仍然是一项挑战。为了全面了解胁迫缓解机制,我们对公开可用的与胁迫相关的转录组数据进行了详尽分析。我们将荟萃分析与无监督机器学习算法相结合,以确定拟南芥地上部和根部在暴露1 - 6小时和12 - 24小时时活跃的与胁迫相关的核心基因。为确保输出结果的稳健性和生物学意义(这在荟萃分析中常常缺乏),我们纳入了三重验证。我们提出了一个“胁迫基因核心”:一组参与植物对十种不利环境条件及乙烯前体补充(而非个别条件)耐受性的关键基因。值得注意的是,乙烯在这个核心中起关键调节作用,影响基因表达并作为胁迫耐受性的关键因素。此外,该分析还揭示了以前未表征的基因、大家族中的关键基因以及基因表达动态,这些被用于创建经过生物学验证的数据库,可指导进一步的非生物胁迫研究。这些发现为培育多胁迫抗性作物建立了一个强大的框架,为应对气候挑战的可持续农业铺平了道路。