Suppr超能文献

肠杆菌属 SA187 通过产生 2-酮基-4-甲基硫丁酸来诱导植物的抗胁迫性。

Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2-keto-4-methylthiobutyric acid production.

机构信息

King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, Kingdom of Saudi Arabia.

Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, France.

出版信息

PLoS Genet. 2018 Mar 19;14(3):e1007273. doi: 10.1371/journal.pgen.1007273. eCollection 2018 Mar.

Abstract

Several plant species require microbial associations for survival under different biotic and abiotic stresses. In this study, we show that Enterobacter sp. SA187, a desert plant endophytic bacterium, enhances yield of the crop plant alfalfa under field conditions as well as growth of the model plant Arabidopsis thaliana in vitro, revealing a high potential of SA187 as a biological solution for improving crop production. Studying the SA187 interaction with Arabidopsis, we uncovered a number of mechanisms related to the beneficial association of SA187 with plants. SA187 colonizes both the surface and inner tissues of Arabidopsis roots and shoots. SA187 induces salt stress tolerance by production of bacterial 2-keto-4-methylthiobutyric acid (KMBA), known to be converted into ethylene. By transcriptomic, genetic and pharmacological analyses, we show that the ethylene signaling pathway, but not plant ethylene production, is required for KMBA-induced plant salt stress tolerance. These results reveal a novel molecular communication process during the beneficial microbe-induced plant stress tolerance.

摘要

一些植物物种需要微生物共生才能在不同的生物和非生物胁迫下生存。在这项研究中,我们表明,沙漠植物内生菌 Enterobacter sp. SA187 可以提高作物紫花苜蓿在田间条件下的产量,以及模式植物拟南芥在体外的生长,这表明 SA187 具有作为提高作物产量的生物解决方案的巨大潜力。研究 SA187 与拟南芥的相互作用,我们揭示了与 SA187 与植物有益共生相关的许多机制。SA187 定植于拟南芥的根和茎的表面和内部组织。SA187 通过产生细菌 2-酮-4-甲基硫代丁酸(KMBA)来诱导耐盐性,已知 KMBA 会转化为乙烯。通过转录组学、遗传学和药理学分析,我们表明,乙烯信号通路,而不是植物乙烯的产生,是 KMBA 诱导的植物耐盐性所必需的。这些结果揭示了有益微生物诱导植物耐胁迫过程中的一种新的分子通讯过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c4/5875868/f30176568a1c/pgen.1007273.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验