Suppr超能文献

RecyBat24:一个用于检测电子垃圾处理中锂离子电池的数据集。

RecyBat24: a dataset for detecting lithium-ion batteries in electronic waste disposal.

作者信息

Acaro Chacón Ximena Carolina, Lo Scudo Fabrizio, Cappuccino Gregorio, Dodaro Carmine

机构信息

University of Calabria, Arcavacata, Italy.

出版信息

Sci Data. 2025 May 22;12(1):843. doi: 10.1038/s41597-025-05211-5.

Abstract

In recent years, deep learning techniques have been extensively used for the identification and classification of lithium-ion batteries. However, these models typically require a costly and labor-intensive labeling process, often influenced by commercial or proprietary concerns. In this study, we introduce RecyBat24, a publicly accessible image dataset for the detection and classification of three battery types: Pouch, Prismatic, and Cylindrical. Our dataset is designed to support both academic research and industrial applications, closely replicating real-world scenarios during the acquisition process and employing data augmentation techniques to simulate various external conditions. Additionally, we demonstrate how the RecyBat24's detection-oriented annotations can be used to create a second version of RecyBat24for instance-segmentation tasks. Finally, we demonstrate that recent lightweight machine learning models achieve high accuracy, highlighting their potential for classification and segmentation applications where computational resources are constrained.

摘要

近年来,深度学习技术已被广泛用于锂离子电池的识别和分类。然而,这些模型通常需要一个成本高昂且劳动密集的标注过程,这往往受到商业或专有问题的影响。在本研究中,我们引入了RecyBat24,这是一个可公开获取的图像数据集,用于检测和分类三种电池类型:软包电池、方形电池和圆柱形电池。我们的数据集旨在支持学术研究和工业应用,在采集过程中紧密复制真实场景,并采用数据增强技术来模拟各种外部条件。此外,我们展示了如何将RecyBat24的面向检测的注释用于创建RecyBat24的第二个版本以用于实例分割任务。最后,我们证明了最近的轻量级机器学习模型能够实现高精度,突出了它们在计算资源受限的分类和分割应用中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e99f/12098665/4bf7256ffd58/41597_2025_5211_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验