Nixon Michelle Pistner, Gloor Gregory B, Silverman Justin D
College of Information Sciences and Technology, Pennsylvania State University, University Park, PA, 16802, USA.
Department of Biochemistry, University of Western Ontario, London, ON, N6A 3K7, Canada.
Genome Biol. 2025 May 22;26(1):139. doi: 10.1186/s13059-025-03609-3.
Statistical normalizations are used in differential analyses to address sample-to-sample variation in sequencing depth. Yet normalizations make strong, implicit assumptions about the scale of biological systems, such as microbial load, leading to false positives and negatives. We introduce scale models as a generalization of normalizations, which allows researchers to model potential errors in these modeling assumptions, thereby enhancing the transparency and robustness of data analyses. In practice, scale models can drastically reduce false positives and false negatives rates. We introduce updates to the popular ALDEx2 software package, available on Bioconductor, facilitating scale model analysis.
统计归一化用于差异分析,以解决测序深度的样本间差异。然而,归一化对生物系统的规模(如微生物负荷)做出了强烈的隐含假设,导致出现假阳性和假阴性。我们引入规模模型作为归一化的推广,它允许研究人员对这些建模假设中的潜在误差进行建模,从而提高数据分析的透明度和稳健性。在实践中,规模模型可以大幅降低假阳性和假阴性率。我们对Bioconductor上流行的ALDEx2软件包进行了更新,以方便进行规模模型分析。