Suppr超能文献

将尺度不确定性纳入微生物组和基因表达分析,作为归一化的扩展。

Incorporating scale uncertainty in microbiome and gene expression analysis as an extension of normalization.

作者信息

Nixon Michelle Pistner, Gloor Gregory B, Silverman Justin D

机构信息

College of Information Sciences and Technology, Pennsylvania State University, University Park, PA, 16802, USA.

Department of Biochemistry, University of Western Ontario, London, ON, N6A 3K7, Canada.

出版信息

Genome Biol. 2025 May 22;26(1):139. doi: 10.1186/s13059-025-03609-3.

Abstract

Statistical normalizations are used in differential analyses to address sample-to-sample variation in sequencing depth. Yet normalizations make strong, implicit assumptions about the scale of biological systems, such as microbial load, leading to false positives and negatives. We introduce scale models as a generalization of normalizations, which allows researchers to model potential errors in these modeling assumptions, thereby enhancing the transparency and robustness of data analyses. In practice, scale models can drastically reduce false positives and false negatives rates. We introduce updates to the popular ALDEx2 software package, available on Bioconductor, facilitating scale model analysis.

摘要

统计归一化用于差异分析,以解决测序深度的样本间差异。然而,归一化对生物系统的规模(如微生物负荷)做出了强烈的隐含假设,导致出现假阳性和假阴性。我们引入规模模型作为归一化的推广,它允许研究人员对这些建模假设中的潜在误差进行建模,从而提高数据分析的透明度和稳健性。在实践中,规模模型可以大幅降低假阳性和假阴性率。我们对Bioconductor上流行的ALDEx2软件包进行了更新,以方便进行规模模型分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdcd/12100815/f66bba10dfbe/13059_2025_3609_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验