Suppr超能文献

使用估计倾向得分的逆治疗概率加权法调整的纳尔逊-奥伦估计量。

Adjusted Nelson-Aalen Estimators by Inverse Treatment Probability Weighting With an Estimated Propensity Score.

作者信息

Deng Yuhao, Wang Rui

机构信息

Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA.

Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA.

出版信息

Stat Med. 2025 May;44(10-12):e70085. doi: 10.1002/sim.70085.

Abstract

Inverse probability of treatment weighting (IPW) has been well applied in causal inference to estimate population-level estimands from observational studies. For time-to-event outcomes, the failure time distribution can be estimated by estimating the cumulative hazard in the presence of random right censoring. IPW can be performed by weighting the event counting process and at-risk process by the inverse treatment probability, resulting in an adjusted Nelson-Aalen estimator for the population-level counterfactual cumulative incidence function. We consider the adjusted Nelson-Aalen estimator with an estimated propensity score in the competing risks setting. When the estimated propensity score is regular and asymptotically linear, we derive the influence functions for the counterfactual cumulative hazard and cumulative incidence. Then we establish the asymptotic properties for the estimators. We show that the uncertainty in the estimated propensity score contributes to an additional variation in the estimators. However, through simulation and real-data application, we find that such an additional variation is usually small.

摘要

治疗权重逆概率(IPW)已在因果推断中得到很好的应用,用于从观察性研究中估计总体水平的估计量。对于生存时间结局,在存在随机右删失的情况下,可以通过估计累积风险来估计失效时间分布。IPW可以通过用治疗概率的倒数对事件计数过程和风险过程进行加权来实现,从而得到总体水平反事实累积发病率函数的调整后的纳尔逊-奥尔森估计量。我们考虑在竞争风险设定下使用估计的倾向得分的调整后的纳尔逊-奥尔森估计量。当估计的倾向得分是正则且渐近线性时,我们推导反事实累积风险和累积发病率的影响函数。然后我们建立估计量的渐近性质。我们表明,估计的倾向得分中的不确定性会导致估计量出现额外的变异。然而,通过模拟和实际数据应用,我们发现这种额外的变异通常很小。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验