Suppr超能文献

专家在预先 elicitation 中的一致性及其对贝叶斯推断的影响。

Expert agreement in prior elicitation and its effects on Bayesian inference.

机构信息

Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.

Department of Psychology, University of Basel, Basel, Switzerland.

出版信息

Psychon Bull Rev. 2022 Oct;29(5):1776-1794. doi: 10.3758/s13423-022-02074-4. Epub 2022 Apr 4.

Abstract

Bayesian inference requires the specification of prior distributions that quantify the pre-data uncertainty about parameter values. One way to specify prior distributions is through prior elicitation, an interview method guiding field experts through the process of expressing their knowledge in the form of a probability distribution. However, prior distributions elicited from experts can be subject to idiosyncrasies of experts and elicitation procedures, raising the spectre of subjectivity and prejudice. Here, we investigate the effect of interpersonal variation in elicited prior distributions on the Bayes factor hypothesis test. We elicited prior distributions from six academic experts with a background in different fields of psychology and applied the elicited prior distributions as well as commonly used default priors in a re-analysis of 1710 studies in psychology. The degree to which the Bayes factors vary as a function of the different prior distributions is quantified by three measures of concordance of evidence: We assess whether the prior distributions change the Bayes factor direction, whether they cause a switch in the category of evidence strength, and how much influence they have on the value of the Bayes factor. Our results show that although the Bayes factor is sensitive to changes in the prior distribution, these changes do not necessarily affect the qualitative conclusions of a hypothesis test. We hope that these results help researchers gauge the influence of interpersonal variation in elicited prior distributions in future psychological studies. Additionally, our sensitivity analyses can be used as a template for Bayesian robustness analyses that involve prior elicitation from multiple experts.

摘要

贝叶斯推断需要指定先验分布,以量化参数值的先验不确定性。指定先验分布的一种方法是通过先验启发式方法,该方法指导领域专家以概率分布的形式表达他们的知识。然而,从专家那里启发式得出的先验分布可能会受到专家和启发式过程的特殊性的影响,从而引发主观性和偏见的问题。在这里,我们研究了启发式先验分布中人际差异对贝叶斯因子假设检验的影响。我们从六位具有不同心理学背景的学术专家那里启发式得出了先验分布,并在心理学的 1710 项研究的重新分析中应用了启发式得出的先验分布以及常用的默认先验分布。贝叶斯因子随不同先验分布变化的程度通过三个证据一致性度量来量化:我们评估先验分布是否改变了贝叶斯因子的方向,是否导致证据强度的类别发生变化,以及它们对贝叶斯因子的值有多大影响。我们的结果表明,尽管贝叶斯因子对先验分布的变化很敏感,但这些变化不一定会影响假设检验的定性结论。我们希望这些结果能够帮助研究人员在未来的心理学研究中衡量启发式先验分布中人际差异的影响。此外,我们的敏感性分析可以用作涉及从多个专家进行先验启发式的贝叶斯稳健性分析的模板。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fa1/9568464/53ea6a8a6535/13423_2022_2074_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验