Cleeton Conor, Sarkisov Lev
Department of Chemical Engineering, University of Manchester, Manchester, UK.
Nat Commun. 2025 May 23;16(1):4806. doi: 10.1038/s41467-025-59952-3.
Exploring the expansive and largely untapped chemical space of metal-organic frameworks (MOFs) holds promise for revolutionising the field of materials science. MOFs, hailed for their modular architecture, offer unmatched flexibility in customising functionalities to meet specific application needs. However, navigating this chemical space to identify optimal MOF structures poses a significant challenge. Traditional high-throughput computational screening (HTCS), while useful, is often limited by a distribution bias towards materials not aligned with the desired functionalities. To overcome these limitations, this study adopts a "deep dreaming" methodology to optimise MOFs in silico, aiming to generate structures with systematically shifted properties that are closer to target functionalities from the outset. Our approach integrates property prediction and structure optimisation within a single interpretable framework, leveraging a specialised chemical language model augmented with attention mechanisms. Focusing on a curated set of MOF properties critical to applications like carbon capture and energy storage, we demonstrate how deep dreaming can be utilised as a tool for targeted material design.
探索金属有机框架(MOF)广阔且大多未被开发的化学空间有望彻底改变材料科学领域。MOF因其模块化结构而备受赞誉,在定制功能以满足特定应用需求方面具有无与伦比的灵活性。然而,在这个化学空间中寻找最佳MOF结构是一项重大挑战。传统的高通量计算筛选(HTCS)虽然有用,但往往受到对与所需功能不匹配材料的分布偏差的限制。为了克服这些限制,本研究采用“深度梦境”方法在计算机上优化MOF,旨在生成从一开始就具有系统地向目标功能偏移特性的结构。我们的方法在一个可解释的单一框架内集成了性能预测和结构优化,利用了一个通过注意力机制增强的专门化学语言模型。针对一组对碳捕获和能量存储等应用至关重要的精心挑选的MOF特性,我们展示了深度梦境如何用作靶向材料设计的工具。