Suppr超能文献

隐马尔可夫模型揭示慢性颈肩痛患者大脑动力学改变

Altered brain dynamics in chronic neck and shoulder pain revealed by hidden Markov model.

作者信息

Qiu Zhiqiang, Liu Tianci, Zeng Chengxi, Yang Maojiang, He Libing, Li Hongjian, Ming Jia, Xu Xiaoxue

机构信息

Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.

Department of Pain, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.

出版信息

Sci Rep. 2025 May 23;15(1):18018. doi: 10.1038/s41598-025-03057-w.

Abstract

Chronic neck and shoulder pain (CNSP) is the most common clinical symptom of cervical spondylosis, which not only greatly affects individuals' quality of life but also places a significant burden on social healthcare systems. Existing analgesic treatments are often associated with significant adverse effects and limited efficacy. Recently, non-invasive neuromodulation techniques have shown promise, but the central mechanisms underlying chronic pain remain poorly understood. Recent advances in resting-state functional magnetic resonance imaging (rs-fMRI) have highlighted altered brain connectivity in CNSP patients. However, traditional methods, such as the sliding window approach, have limitations in capturing rapid fluctuations and individual differences in brain activity. The Hidden Markov Model (HMM) assumes that the brain is in different hidden states at different time points, with each state corresponding to a distinct connectivity pattern. It identifies state changes adaptively, without relying on preset time windows. In this study, we applied HMM to rs-fMRI data from CNSP patients and healthy controls to explore brain activity dynamics and state transition patterns. We identified five distinct brain states, revealing significant differences in functional occupancy, lifetime, switching rate, and state transition probabilities between CNSP patients and controls. This offers a novel neuroimaging perspective for personalizing interventions based on the individualized dynamic characteristics of CNSP patients. However, further research is needed to determine whether the number and nature of the internal states identified in this study can be generalized to other CNSP patient cohorts.

摘要

慢性颈肩痛(CNSP)是颈椎病最常见的临床症状,它不仅极大地影响个人生活质量,还给社会医疗系统带来沉重负担。现有的镇痛治疗往往伴有明显的不良反应且疗效有限。最近,非侵入性神经调节技术显示出前景,但慢性疼痛的中枢机制仍知之甚少。静息态功能磁共振成像(rs-fMRI)的最新进展突出了CNSP患者大脑连接性的改变。然而,传统方法,如滑动窗口法,在捕捉大脑活动的快速波动和个体差异方面存在局限性。隐马尔可夫模型(HMM)假设大脑在不同时间点处于不同的隐藏状态,每个状态对应一种独特的连接模式。它能自适应地识别状态变化,而不依赖预设的时间窗口。在本研究中,我们将HMM应用于CNSP患者和健康对照的rs-fMRI数据,以探索大脑活动动态和状态转换模式。我们识别出五种不同的脑状态,揭示了CNSP患者和对照在功能占据、寿命、转换率和状态转换概率方面的显著差异。这为基于CNSP患者个体动态特征进行个性化干预提供了一种新的神经影像学视角。然而,还需要进一步研究来确定本研究中识别出的内部状态的数量和性质是否能推广到其他CNSP患者队列。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验