Suppr超能文献

基于多变换FKAN模型的测井储层参数预测方法研究

Research on prediction method of well logging reservoir parameters based on Multi-TransFKAN model.

作者信息

Yang Huazhong, Chong Zhang, Xiong Lei, Xiong Wenhao, Lin Guilan, Huang Kaiwen, Zhang Wenyi

机构信息

School of Geophysics and Petroleum Resources, Yangtze University, Wuhan, 430100, China.

Tianjin Branch of China National Offshore Oil Corporation, Tianjin, 300400, China.

出版信息

Sci Rep. 2025 May 24;15(1):18057. doi: 10.1038/s41598-025-96112-5.

Abstract

Accurate prediction of reservoir parameters is crucial for enhancing oil exploration efficiency and resource utilization. Although existing deep learning methods have made some progress in reservoir parameter prediction, they still face accuracy limitations in multi-task prediction. Additionally, the black-box nature of these models limits their interpretability, impacting trust and acceptance in practical applications. To address these challenges, this study proposes a Multi-TransFKAN model based on a Transformer architecture and an improved Kolmogorov-Arnold Network (KAN) framework for reservoir parameter prediction and interpretability analysis. By integrating Fourier functions in place of B-spline functions within the KAN framework, the model effectively captures complex periodic and nonlinear features. Combined with Monte Carlo Dropout and SHAP frameworks, it further enhances prediction accuracy and interpretability. Experimental results show that in test wells, the average RMSE values for porosity (PHIF), shale volume (VSH), and water saturation (SW) are 0.053, 0.049, and 0.062, respectively. Compared to other methods, the proposed model reduces RMSE by 52.5% and increases R by 10.7%, demonstrating significant improvements in prediction accuracy. These findings highlight the model's capability to deliver more reliable predictions and a clearer understanding of the factors influencing reservoir parameters. Therefore, the Multi-TransFKAN model not only enhances the accuracy of reservoir parameter prediction but also improves model transparency and reliability in real-world applications through advanced interpretability techniques.

摘要

准确预测储层参数对于提高石油勘探效率和资源利用率至关重要。尽管现有的深度学习方法在储层参数预测方面取得了一些进展,但它们在多任务预测中仍面临精度限制。此外,这些模型的黑箱性质限制了它们的可解释性,影响了实际应用中的信任度和接受度。为了应对这些挑战,本研究提出了一种基于Transformer架构和改进的Kolmogorov-Arnold网络(KAN)框架的多任务预测与可解释性分析模型Multi-TransFKAN。通过在KAN框架中集成傅里叶函数代替B样条函数,该模型有效地捕捉了复杂的周期性和非线性特征。结合蒙特卡洛随机失活和SHAP框架,进一步提高了预测精度和可解释性。实验结果表明,在测试井中,孔隙度(PHIF)、页岩体积(VSH)和含水饱和度(SW)的平均均方根误差(RMSE)值分别为0.053、0.049和0.062。与其他方法相比,所提出的模型将RMSE降低了52.5%,将相关系数R提高了10.7%,在预测精度上有显著提高。这些结果突出了该模型能够提供更可靠的预测,并更清晰地理解影响储层参数的因素。因此,Multi-TransFKAN模型不仅提高了储层参数预测的准确性,还通过先进的可解释性技术提高了模型在实际应用中的透明度和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489c/12103583/aa2014fb736e/41598_2025_96112_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验