Wang Liang, Weng Yiqi, Yu Wenli
Department of Anesthesiology, Tianjin First Center Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192, China.
BMC Med Inform Decis Mak. 2025 Apr 8;25(1):158. doi: 10.1186/s12911-025-02986-w.
Accurately predicting the depth of anesthesia is essential for ensuring patient safety and optimizing surgical outcomes. Traditional regression-based approaches often struggle to model the complex and dynamic nature of patient responses to anesthetic agents. Machine learning techniques offer a promising alternative by capturing intricate relationships within physiological data. This study proposes a hybrid model integrating Long Short-Term Memory (LSTM) networks, Transformer architectures, and Kolmogorov-Arnold Networks (KAN) to improve the predictive accuracy of anesthesia depth.
The proposed model combines multiple deep learning techniques to address different aspects of anesthesia prediction. The LSTM component captures the sequential nature of drug administration and physiological responses. The Transformer architecture utilizes attention mechanisms to enhance contextual understanding of patient data. The KAN models nonlinear relationships between drug infusion histories and anesthesia depth. The model was trained and evaluated on patient data from a publicly available anesthesia monitoring database. Performance was assessed using Mean Squared Error (MSE) and compared against other models.
The hybrid model demonstrated superior predictive performance compared to conventional regression approaches. Tested on the VitalDB database, the proposed framework achieved a MSE of 0.0062, which is lower than other methods. The inclusion of attention mechanisms and nonlinear modeling contributed to improved accuracy and robustness. The results indicate that the combined approach effectively captures the temporal and nonlinear characteristics of anesthesia depth, offering a more reliable predictive tool for clinical use.
This study presents a novel deep learning framework for anesthesia depth prediction, integrating sequential, attention-based, and nonlinear modeling techniques. The results suggest that this hybrid approach enhances prediction reliability and provides anesthesiologists with a more comprehensive analysis of factors influencing anesthesia depth. Future research will focus on refining model robustness, exploring real-time applications, and addressing potential biases in predictive analytics to further improve clinical decision-making.
准确预测麻醉深度对于确保患者安全和优化手术结果至关重要。传统的基于回归的方法往往难以对患者对麻醉剂反应的复杂动态性质进行建模。机器学习技术通过捕捉生理数据中的复杂关系提供了一种有前途的替代方法。本研究提出了一种集成长短期记忆(LSTM)网络、Transformer架构和柯尔莫哥洛夫 - 阿诺德网络(KAN)的混合模型,以提高麻醉深度的预测准确性.
所提出的模型结合了多种深度学习技术来解决麻醉预测的不同方面。LSTM组件捕捉药物给药和生理反应的顺序性质。Transformer架构利用注意力机制来增强对患者数据的上下文理解。KAN对药物输注历史与麻醉深度之间的非线性关系进行建模.该模型在来自公开可用的麻醉监测数据库的患者数据上进行训练和评估.使用均方误差(MSE)评估性能,并与其他模型进行比较.
与传统回归方法相比 ,混合模型表现出卓越的预测性能。在所测试的VitalDB数据库上 ,所提出框架的MSE为0.0062 ,低于其他方法。注意力机制和非线性建模的纳入有助于提高准确性及鲁棒性。结果表明 ,组合方法有效地捕捉了麻醉深度的时间和非线性特征 ,为临床使用提供了更可靠地预测工具。
本研究提出了一种用于麻醉深度预测的新型深度学习框架 ,集成了顺序建模 ,基于注意力的建模和非线性建模技术。结果表明 ,这种混合方法提高了预测可靠性 ,并为麻醉师提供了对影响麻醉深度的因素更全面的分析。未来的研究将集中在提高模型的鲁棒性 ,探索实时应用 ,以及解决预测分析中的潜在偏差 ,以进一步改善临床决策。