Ding Ruiwen, Luong Kha-Dinh, Rodriguez Erika, da Silva Ana Cristina Araujo Lemos, Hsu William
Medical and Imaging Informatics, Department of Radiological Sciences, Department of Bioengineering, University of California, Los Angeles, CA, 90024, USA.
Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
Sci Rep. 2025 May 25;15(1):18261. doi: 10.1038/s41598-025-99042-4.
In computational pathology, extracting and representing spatial features from gigapixel whole slide images (WSIs) are fundamental tasks, but due to their large size, WSIs are typically segmented into smaller tiles. A critical aspect of analyzing WSIs is how information across tiles is aggregated to predict outcomes such as patient prognosis. We introduce a model that combines a message-passing graph neural network (GNN) with a state space model (Mamba) to capture both local and global spatial relationships among the tiles in WSIs. The model's effectiveness was demonstrated in predicting progression-free survival among patients with early-stage lung adenocarcinomas (LUAD). We compared the model with other state-of-the-art methods for tile-level information aggregation in WSIs, including statistics-based, multiple instance learning (MIL)-based, GNN-based, and GNN-transformer-based aggregation. Our model achieved the highest c-index (0.70) and has the largest number of parameters among comparison models yet maintained a short inference time. Additional experiments showed the impact of different types of node features and different tile sampling strategies on model performance. Code: https://github.com/rina-ding/gat-mamba .
在计算病理学中,从数十亿像素的全切片图像(WSIs)中提取和表示空间特征是基本任务,但由于其尺寸巨大,WSIs通常会被分割成较小的图像块。分析WSIs的一个关键方面是如何聚合跨图像块的信息以预测诸如患者预后等结果。我们引入了一种模型,该模型将消息传递图神经网络(GNN)与状态空间模型(Mamba)相结合,以捕捉WSIs中图像块之间的局部和全局空间关系。该模型在预测早期肺腺癌(LUAD)患者的无进展生存期方面的有效性得到了证明。我们将该模型与其他用于WSIs中图像块级信息聚合的先进方法进行了比较,包括基于统计的、基于多实例学习(MIL)的、基于GNN的和基于GNN-Transformer的聚合方法。我们的模型实现了最高的c指数(0.70),并且在比较模型中参数数量最多,但仍保持较短的推理时间。额外的实验展示了不同类型的节点特征和不同的图像块采样策略对模型性能的影响。代码:https://github.com/rina-ding/gat-mamba 。