Calatayud David G, Martín Arroyo María Victoria, Caballero Amador C, Villegas Marina, Ge Haobo, Botchway Stanley W, Pascu Sofia I, Peiteado Marco, Jardiel Teresa
Electroceramics Department, Instituto de Cerámica y VidrioCSIC, Kelsen 5, Campus de Cantoblanco, 28049 Madrid, Spain.
Inorganic Chemistry, Universidad Autonoma de Madrid, Francisco Tomas y Valiente 7, Campus de Cantoblanco, 28049 Madrid, Spain.
ACS Omega. 2025 Apr 29;10(19):19950-19965. doi: 10.1021/acsomega.5c01649. eCollection 2025 May 20.
We report our recent advances in the design and synthesis of functional and hybrid composite nanomaterials with properties geared toward life sciences assays and as platforms for biomedical imaging applications. Using a stepwise reverse micelle procedure, we synthesized hybrid platelets comprising rare earth-doped strontium aluminate cores labeled Eu,Dy:SrAlO, where the phase nominally denoted as Sr.Eu.Dy.AlO dominates the nature of the composite, as demonstrated by extensive X-ray diffraction investigations. These were coated with a biocompatible cerium oxide shell, giving rise to the hierarchical hybrids denoted CeO@Eu,Dy:SrAlO. Such Eu/Dy codoped strontium aluminates exhibit broad luminescent emissions with high optical sensitivity. The CeO shell further imparts biocompatibility and water dispersibility, resulting in kinetically stable nanoplatelets which can translocate into living cells in lifetime imaging protocols that were optimized for imaging across nano- and microscales. Multiphoton fluorescence lifetime imaging microscopy (MP FLIM) confirmed the luminescent properties in thin films and living cellular environments. These nanohybrids represent a significant step forward in the development of functional molecules and materials, leveraging directed and self-assembly strategies for their synthesis. Their luminescence (detectable by fluorescence as well as phosphorescence emission intensity correlated with emission lifetime), negligible toxicity on the time scale of imaging assays and up to 72 h, and biocompatibility with cellular milieu enabled their tracing with living cells. Their cellular activity was estimated by standard MTT assays in PC-3 and provided a further insight into their behavior in biological environments. The inclusion of heavy cerium and strontium atoms enhanced X-ray attenuation, supporting multimodal imaging by integrating optical and X-ray-based methods, which paves the way for potential applications in computed tomography correlated to confocal microscopy coupled with fluorescence lifetime imaging. These findings highlight the versatility of these luminescent hybrids for bioimaging and as synthetic scaffolds toward nanomedicine applications, bridging advanced imaging modalities with functional materials design.
我们报告了我们在功能和混合复合纳米材料的设计与合成方面的最新进展,这些材料的特性适用于生命科学分析,并作为生物医学成像应用的平台。通过逐步反胶束法,我们合成了包含稀土掺杂铝酸锶核(标记为Eu,Dy:SrAlO)的混合血小板,其中名义上表示为Sr.Eu.Dy.AlO的相主导了复合材料的性质,大量的X射线衍射研究证明了这一点。这些核被生物相容性氧化铈壳包覆,形成了称为CeO@Eu,Dy:SrAlO的分级杂化物。这种Eu/Dy共掺杂的铝酸锶表现出具有高光学灵敏度的宽发光发射。CeO壳进一步赋予生物相容性和水分散性,产生动力学稳定的纳米血小板,其可以在针对纳米和微米尺度成像优化的寿命成像方案中转移到活细胞中。多光子荧光寿命成像显微镜(MP FLIM)证实了薄膜和活细胞环境中的发光特性。这些纳米杂化物代表了功能分子和材料开发的重要一步,利用定向和自组装策略进行合成。它们的发光(可通过荧光以及与发射寿命相关的磷光发射强度检测)、在成像分析时间尺度上可忽略不计的毒性以及长达72小时的毒性,以及与细胞环境的生物相容性使得它们能够在活细胞中被追踪。通过PC-3中的标准MTT分析评估了它们的细胞活性,并进一步深入了解了它们在生物环境中的行为。重铈和锶原子的加入增强了X射线衰减,通过整合基于光学和X射线的方法支持多模态成像,这为与共聚焦显微镜和荧光寿命成像相关的计算机断层扫描中的潜在应用铺平了道路。这些发现突出了这些发光杂化物在生物成像方面的多功能性以及作为纳米医学应用的合成支架的多功能性,将先进的成像模式与功能材料设计联系起来。