Suppr超能文献

一种基于对抗域广义残差注意力网络的睡眠分期模型。

A sleep staging model based on adversarial domain generalized residual attention network.

作者信息

Zhang Pengwei, Xiang Sijia, Hu Kailei, He Jialing, Chen Jingxia

机构信息

School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an, China.

出版信息

Front Neurosci. 2025 May 9;19:1501511. doi: 10.3389/fnins.2025.1501511. eCollection 2025.

Abstract

To solve the problem of poor generalization ability of the model on unknown data and the difference of physiological signals between different subjects. A sleep staging model based on Adversarial Domain Generalized Residual Attention Network (ADG-RANet) is designed. The model is divided into three parts: feature extractor, domain discriminator and label classifier. In the feature extractor part, the channel attention network is combined with the residual block to selectively enhance the important features and the correlation between multi-channel physiological signals. Inspired by the idea of U-shaped network, the details and context information in the input data are effectively captured through up-sampling and skip connection operations. The Bi-GRU network is used to further extract the deep temporal features. A Gradient Reversal Layer (GRL) is introduced between the domain discriminator and the feature extractor to promote the feature extractor to obtain the invariant features between different subjects through the adversarial training process. The label classifier uses the deep features learned by the feature extractor to perform sleep staging. According to the AASM sleep staging criterion, the five-classification accuracy of the model on the ISRUC-S3 dataset was 82.51%, the m-F1 score was 0.8100, and the Kappa coefficient was 0.7748. By observing the test results of each fold and comparing with the benchmark model, it is verified that the proposed model has better generalization on unknown data.

摘要

为了解决模型对未知数据泛化能力差以及不同受试者之间生理信号存在差异的问题。设计了一种基于对抗域广义残差注意力网络(ADG-RANet)的睡眠分期模型。该模型分为三个部分:特征提取器、域判别器和标签分类器。在特征提取器部分,将通道注意力网络与残差块相结合,以选择性地增强重要特征以及多通道生理信号之间的相关性。受U形网络思想的启发,通过上采样和跳跃连接操作有效地捕捉输入数据中的细节和上下文信息。使用双向门控循环单元(Bi-GRU)网络进一步提取深度时间特征。在域判别器和特征提取器之间引入梯度反转层(GRL),以促使特征提取器通过对抗训练过程获得不同受试者之间的不变特征。标签分类器使用特征提取器学习到的深度特征进行睡眠分期。根据美国睡眠医学学会(AASM)睡眠分期标准,该模型在ISRUC-S3数据集上的五类分类准确率为82.51%,m-F1分数为0.8100,卡帕系数为0.7748。通过观察各折的测试结果并与基准模型进行比较,验证了所提出的模型对未知数据具有更好的泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75d9/12098520/07bae813195c/fnins-19-1501511-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验