Guller Anna E, Nadort Annemarie, Generalova Alla N, Khaydukov Evgeny V, Nechaev Andrey V, Kornienko Inna A, Petersen Elena V, Liang Liuen, Shekhter Anatoly B, Qian Yi, Goldys Ewa M, Zvyagin Andrei V
Macquarie University, Department of Physics and Astronomy, MQ Photonics Research Centre, The ARC Centre of Excellence for Nanoscale BioPhotonics, North Ryde, New South Wales 2109, Australia.
Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
ACS Biomater Sci Eng. 2018 Sep 10;4(9):3143-3153. doi: 10.1021/acsbiomaterials.8b00633. Epub 2018 Aug 22.
Upconversion nanoparticles (UCNPs) coated with polyethylenimine (PEI) are popular background-free optical contrast probes and efficient drug and gene delivery agents attracting attention in science, industry, and medicine. Their unique optical properties are especially useful for subsurface nanotheranostics applications, in particular, in skin. However, high cytotoxicity of PEI limits safe use of UCNP@PEI, and this represents a major barrier for clinical translation of UCNP@PEI-based technologies. Our study aims to address this problem by exploring additional surface modifications to UCNP@PEI to create less toxic and functional nanotheranostic materials. We designed and synthesized six types of layered polymer coatings that envelop the original UCNP@PEI surface, five of which reduced the cytotoxicity to human skin keratinocytes under acute (24 h) and subacute (120 h) exposure. In parallel, we examined the photoluminescence spectra and lifetime of the surface-modified UCNP@PEI. To quantify their brightness, we developed original methodology to precisely measure the colloidal concentration to normalize the photoluminescence signal using a nondigesting mass spectrometry protocol. Our results, specified for the individual coatings, show that, despite decreasing the cytotoxicity, the external polymer coatings of UCNP@PEI quench the upconversion photoluminescence in biologically relevant aqueous environments. This trade-off between cytotoxicity and brightness for surface-coated UCNPs emphasizes the need for the combined assessment of the viability of normal cells exposed to the nanoparticles and the photophysical properties of postmodification UCNPs. We present an optimized methodology for rational surface design of UCNP@PEI in biologically relevant conditions, which is essential to facilitate the translation of such nanoparticles to the clinical applications.
涂覆有聚乙烯亚胺(PEI)的上转换纳米颗粒(UCNP)是无背景的光学对比探针和高效的药物及基因递送剂,在科学、工业和医学领域备受关注。它们独特的光学性质对于皮下纳米诊疗应用尤其有用,特别是在皮肤领域。然而,PEI的高细胞毒性限制了UCNP@PEI的安全使用,这是基于UCNP@PEI的技术临床转化的主要障碍。我们的研究旨在通过探索对UCNP@PEI进行额外的表面修饰来解决这个问题,以制备毒性更低且功能化的纳米诊疗材料。我们设计并合成了六种包裹原始UCNP@PEI表面的层状聚合物涂层,其中五种在急性(24小时)和亚急性(120小时)暴露下降低了对人皮肤角质形成细胞的细胞毒性。同时,我们检测了表面修饰后的UCNP@PEI的光致发光光谱和寿命。为了量化它们的亮度,我们开发了一种原始方法,通过非消化质谱协议精确测量胶体浓度以归一化光致发光信号。我们针对各个涂层的结果表明,尽管降低了细胞毒性,但UCNP@PEI的外部聚合物涂层在生物相关的水性环境中会淬灭上转换光致发光。表面涂层UCNP在细胞毒性和亮度之间的这种权衡强调了需要综合评估暴露于纳米颗粒的正常细胞的活力以及修饰后UCNP的光物理性质。我们提出了一种在生物相关条件下对UCNP@PEI进行合理表面设计的优化方法,这对于促进此类纳米颗粒向临床应用的转化至关重要。