Suppr超能文献

通过单细胞RNA测序和实验验证揭示高级别浆液性卵巢癌肿瘤微环境中的关键调控通路和预后生物标志物。

Uncovering key regulatory pathways and prognostic biomarkers in the tumor microenvironment of high-grade serous ovarian cancer through single-cell RNA sequencing and experimental validation.

作者信息

Li Yue, Zhao Long, Tian Ying, Zhou Qianqian, Liu Xia, Yang Shucai, Xu Jinfeng, Zou Chang, Zhang Jinling, Luo Hui

机构信息

The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.

Department of Nuclear Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China.

出版信息

Front Oncol. 2025 May 9;15:1591430. doi: 10.3389/fonc.2025.1591430. eCollection 2025.

Abstract

BACKGROUND

High-grade serous ovarian cancer (HGSOC) is a leading cause of cancer-related deaths among women globally. This study aims to identify novel regulatory targets and signaling pathways that modulate the tumor microenvironment (TME) in HGSOC, focusing on the pleiotrophin (PTN) signaling pathway and syndecan 4 (SDC4) expression as potential biomarkers for prognosis.

METHODS

Bioinformatics analysis was conducted on single-cell RNA sequencing (scRNA-seq) data (GSE146026) of HGSOC to investigate the TME. The data were subjected to unsupervised clustering to classify cell types within the TME, revealing eight distinct clusters representing various cell types. Cell-cell interactions were analyzed using the CellChat tool. Additionally, TCGA datasets were used to validate the expression of SDC4 and its association with clinical outcomes. The functional enrichment of differentially expressed genes (DEGs) between high and low SDC4 expression groups was performed to uncover associated pathways. Experimental validation was carried out using quantitative real-time PCR (qRT-PCR) and Western blotting on ovarian cancer cell lines (OVCAR3 and SKOV3).

RESULTS

The unsupervised clustering analysis revealed eight major cell types: macrophages, fibroblasts, ovarian cancer cells, B cells, T cells, dendritic cells, and erythrocytes. CellChat analysis highlighted significant interactions between these cell types, suggesting a complex TME. Further exploration identified PTN signaling as a key regulator within the HGSOC TME. Validation using TCGA datasets revealed upregulation of SDC4 in ovarian cancer tissues, with high SDC4 expression correlating with shorter overall survival. DEGs between high and low SDC4 expression groups were linked to the PI3K-Akt and MAPK signaling pathways, cell junction organization, and focal adhesion. qRT-PCR validation confirmed a significant upregulation of SDC4 in OVCAR3 and SKOV3 ovarian cancer cell lines, with expression levels 3.8- to 4.2-fold higher than control cells (<0.01), supporting the computational predictions.

CONCLUSION

This study highlights the PTN signaling pathway as a potential therapeutic target in HGSOC and identifies SDC4 as a prognostic biomarker for poor patient outcomes. Our findings offer new insights into the molecular mechanisms governing the TME of HGSOC, although further investigation is needed to fully elucidate the functional role of SDC4 in ovarian cancer progression.

摘要

背景

高级别浆液性卵巢癌(HGSOC)是全球女性癌症相关死亡的主要原因。本研究旨在确定调节HGSOC肿瘤微环境(TME)的新调控靶点和信号通路,重点关注多效生长因子(PTN)信号通路和syndecan 4(SDC4)表达作为预后的潜在生物标志物。

方法

对HGSOC的单细胞RNA测序(scRNA-seq)数据(GSE146026)进行生物信息学分析以研究TME。对数据进行无监督聚类以对TME内的细胞类型进行分类,揭示了代表各种细胞类型的八个不同聚类。使用CellChat工具分析细胞间相互作用。此外,利用TCGA数据集验证SDC4的表达及其与临床结果的关联。对高SDC4表达组和低SDC4表达组之间的差异表达基因(DEG)进行功能富集,以揭示相关通路。使用定量实时PCR(qRT-PCR)和蛋白质印迹法对卵巢癌细胞系(OVCAR3和SKOV3)进行实验验证。

结果

无监督聚类分析揭示了八种主要细胞类型:巨噬细胞、成纤维细胞、卵巢癌细胞、B细胞、T细胞、树突状细胞和红细胞。CellChat分析突出了这些细胞类型之间的显著相互作用,表明TME复杂。进一步探索确定PTN信号通路是HGSOC TME中的关键调节因子。使用TCGA数据集进行的验证显示卵巢癌组织中SDC4上调,高SDC4表达与较短的总生存期相关。高SDC4表达组和低SDC4表达组之间的DEG与PI3K-Akt和MAPK信号通路、细胞连接组织和粘着斑相关。qRT-PCR验证证实OVCAR3和SKOV3卵巢癌细胞系中SDC4显著上调,表达水平比对照细胞高3.8至4.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7807/12098048/f70c49eaee36/fonc-15-1591430-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验