Suppr超能文献

通过调整衬底温度提高真空沉积宽带隙钙钛矿太阳能电池性能:基于形貌、电荷传输和漂移扩散模拟的见解

Tuning substrate temperature for enhanced vacuum-deposited wide-bandgap perovskite solar cells: insights from morphology, charge transport, and drift-diffusion simulations.

作者信息

Gil-Escrig Lidón, Nespoli Jasmeen, Elhorst Fransien D, Ventosinos Federico, Roldán-Carmona Cristina, Koster L Jan Anton, Savenije Tom J, Sessolo Michele, Bolink Henk J

机构信息

Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático J. Beltrán 2 46980 Paterna Spain

Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology 2629 HZ Delft The Netherlands.

出版信息

EES Solar. 2025 May 14. doi: 10.1039/d5el00021a.

Abstract

The efficiency of vacuum-processed perovskite solar cells lags behind that of solution-processed devices, partially because of the limited spectrum of deposition parameters that can be controlled during deposition. Substrate temperature is in principle a powerful tool to control the condensation and crystallization of thin films, but has been scarcely investigated for perovskites. This study systematically investigates the effect of substrate temperature on the deposition of the wide-bandgap perovskite CsFAPb(IBr). We observe temperature-dependent morphological changes linked to variations in the adhesion coefficient of formamidinium iodide. Optical, structural, and optoelectronic analyses reveal that increasing the substrate temperature from -20 °C to 75 °C enhances charge carrier mobility and recombination lifetime by an order of magnitude. However, these improvements do not directly translate into better device performance due to competing factors such as morphology, interface energetics, and trap densities. Using drift-diffusion simulations, we identify key performance-limiting parameters, including ion mobility and charge trapping at interfaces and in the bulk. By optimizing the organic/inorganic deposition rate at -20 °C, we achieve state-of-the-art efficient wide-bandgap perovskite solar cells with enhanced thermal stability. This study highlights substrate temperature as a crucial parameter for improving material quality and device performance in vapor-deposited perovskites.

摘要

真空处理的钙钛矿太阳能电池的效率落后于溶液处理的器件,部分原因是在沉积过程中可控制的沉积参数范围有限。原则上,衬底温度是控制薄膜凝聚和结晶的有力工具,但对钙钛矿的研究很少。本研究系统地研究了衬底温度对宽带隙钙钛矿CsFAPb(IBr)沉积的影响。我们观察到与碘化甲脒粘附系数变化相关的温度依赖性形态变化。光学、结构和光电分析表明,将衬底温度从-20°C提高到75°C可使电荷载流子迁移率和复合寿命提高一个数量级。然而,由于形态、界面能量学和陷阱密度等竞争因素,这些改进并没有直接转化为更好的器件性能。通过漂移扩散模拟,我们确定了关键的性能限制参数,包括离子迁移率以及界面和体相中电荷俘获。通过在-20°C下优化有机/无机沉积速率,我们实现了具有增强热稳定性的最先进高效宽带隙钙钛矿太阳能电池。本研究强调了衬底温度是提高气相沉积钙钛矿材料质量和器件性能的关键参数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验