Suppr超能文献

检测自动驾驶中的愤怒来源:与驾驶相关的因素和外部因素。

Detecting sources of anger in automated driving: driving-related and external factor.

作者信息

Maillant Jordan, Jallais Christophe, Dabic Stéphanie

机构信息

Valeo BRAIN Division, Annemasse, France.

LESCOT, IFSTTAR, Univ Gustave Eiffel, Univ Lyon, Lyon, France.

出版信息

Front Neuroergon. 2025 May 9;6:1548861. doi: 10.3389/fnrgo.2025.1548861. eCollection 2025.

Abstract

INTRODUCTION

Anger while driving is often provoked by on-road events like sudden cut-offs but can also arise from external factors, such as rumination of negative thoughts. With the rise of autonomous vehicles, drivers are expected to engage more in non-driving activities, potentially increasing the occurrence of anger stemming from non-driving-related sources. Given the well-established link between anger and aggressive driving behaviors, it is crucial to detect and understand the various origins of anger in autonomous driving contexts to enhance road safety.

METHODS

This study investigates whether physiological (cardiac and respiratory activities) and ocular indicators of anger vary depending on its source (driving-related or external) in a simulated autonomous driving environment. Using a combination of autobiographical recall (AR) for external anger induction and driving-related scenarios (DS), 47 participants were exposed to anger and/or neutral conditions across four groups.

RESULTS

The results revealed that combined anger induction (incorporating both external and driving-related sources) led to higher subjective anger ratings, more heart rate variability. However, when examined separately, individual anger sources did not produce significant differences in physiological responses and ocular strategies.

DISCUSSION

These results suggest that the combination of anger-inducing events, rather than the specific source, is more likely to provoke a heightened state of anger. Consequently, future research should employ combined induction methods to effectively elicit anger in experimental settings. Moreover, anger detection systems should focus on the overall interplay of contributing factors rather than distinguishing between individual sources, as it is this cumulative dynamic that more effectively triggers significant anger responses.

摘要

引言

驾驶时的愤怒通常由诸如突然插队等道路事件引发,但也可能源于外部因素,如负面想法的反复思考。随着自动驾驶车辆的兴起,预计驾驶员会更多地参与非驾驶活动,这可能会增加由非驾驶相关来源引发的愤怒事件的发生。鉴于愤怒与攻击性驾驶行为之间已确立的联系,在自动驾驶环境中检测和理解愤怒的各种来源对于提高道路安全至关重要。

方法

本研究调查在模拟自动驾驶环境中,愤怒的生理指标(心脏和呼吸活动)和眼部指标是否会因其来源(与驾驶相关或外部)而有所不同。通过结合用于诱发外部愤怒的自传式回忆(AR)和与驾驶相关的场景(DS),47名参与者被分为四组,分别暴露于愤怒和/或中性条件下。

结果

结果显示,综合愤怒诱发(包括外部和与驾驶相关的来源)会导致更高的主观愤怒评分和更多的心率变异性。然而,单独检查时,个体愤怒来源在生理反应和眼部策略上并未产生显著差异。

讨论

这些结果表明,诱发愤怒的事件的组合,而非具体来源,更有可能引发愤怒的加剧状态。因此,未来的研究应采用综合诱发方法,以便在实验环境中有效诱发愤怒。此外,愤怒检测系统应关注促成因素的整体相互作用,而非区分个体来源,因为正是这种累积动态更有效地触发了显著的愤怒反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de29/12098279/a197a68d1696/fnrgo-06-1548861-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验