Liang Xiaohan, Yin Kuochang, Fu Yidian, Xu Guodong, Feng Xiaoxiao, Lv Peiyuan
Graduate School of Hebei North University, Zhangjiakou, Hebei, China.
Graduate School of Hebei Medical University, Shijiazhuang Hebei, China.
Front Neurol. 2025 May 9;16:1516274. doi: 10.3389/fneur.2025.1516274. eCollection 2025.
This study aims to analyze the risk factors for in-stent restenosis in patients who have undergone successful cerebral artery stent implantation and to develop a nomogram-based predictive model.
We utilized data retrospectively collected from 488 patients at Hebei Provincial People's Hospital between April 2019 and March 2024. After applying the inclusion criteria, 390 patients were further analyzed and divided into a training group ( = 274) and a validation group ( = 116). In the training group, we used univariate and multivariate logistic regression to identify independent risk factors for stroke recurrence and then created a nomogram. The nomogram's discrimination and calibration were assessed by examining various metrics, including the concordance index (C-index), the area under the Receiver Operating Characteristic (ROC) curve (AUC), and calibration plots. Decision curve analysis (DCA) was employed to evaluate the clinical utility of the nomogram by quantifying the net benefit for patients at different probability thresholds.
The nomogram for predicting in-stent restenosis in patients undergoing cerebral artery stenting included seven variables: triglyceride-glucose index (TyG), presence of Diabetes Mellitus, postoperative dual antiplatelet therapy, body mass index (BMI), and preoperative MRS score. The C-index (0.807 for the training cohort and 0.804 for the validation cohort) indicated satisfactory discriminative ability of the nomogram. Furthermore, DCA indicated a clinical net benefit from the nomogram.
The predictive model constructed includes six predictive factors: TyG, presence of Diabetes Mellitus, postoperative dual antiplatelet therapy, BMI, and preoperative MRS score. The model demonstrates good predictive ability and can be utilized to predict ischemic stroke recurrence in patients with symptomatic ICAS after successful stent placement.
本研究旨在分析成功进行脑动脉支架植入术的患者发生支架内再狭窄的危险因素,并建立基于列线图的预测模型。
我们回顾性收集了2019年4月至2024年3月期间河北省人民医院488例患者的数据。应用纳入标准后,对390例患者进行进一步分析,并分为训练组(n = 274)和验证组(n = 116)。在训练组中,我们使用单因素和多因素逻辑回归来确定卒中复发的独立危险因素,然后创建列线图。通过检查各种指标,包括一致性指数(C指数)、受试者操作特征曲线(ROC)下面积(AUC)和校准图,评估列线图的辨别力和校准度。采用决策曲线分析(DCA)通过量化不同概率阈值下患者的净获益来评估列线图的临床实用性。
用于预测脑动脉支架置入患者支架内再狭窄的列线图包括七个变量:甘油三酯-葡萄糖指数(TyG)、糖尿病的存在、术后双联抗血小板治疗、体重指数(BMI)和术前改良Rankin量表(MRS)评分。C指数(训练队列中为0.807,验证队列中为0.804)表明列线图具有令人满意的辨别能力。此外,DCA表明列线图具有临床净获益。
构建的预测模型包括六个预测因素:TyG、糖尿病的存在、术后双联抗血小板治疗、BMI和术前MRS评分。该模型具有良好的预测能力,可用于预测症状性颅内动脉粥样硬化性狭窄(ICAS)患者成功置入支架后缺血性卒中的复发。