Liu Weisi, He Zhe, Huang Xiaolei
University of Memphis, Memphis, TN, USA.
Florida State University, Tallahassee, FL, USA.
AMIA Annu Symp Proc. 2025 May 22;2024:723-732. eCollection 2024.
Time roots in applying language models for biomedical applications: models are trained on historical data and will be deployed for new or future data, which may vary from training data. While increasing biomedical tasks have employed state-of-the-art language models, there are very few studies have examined temporal effects on biomedical models when data usually shifts across development and deployment. This study fills the gap by statistically probing relations between language model performance and data shifts across three biomedical tasks. We deploy diverse metrics to evaluate model performance, distance methods to measure data drifts, and statistical methods to quantify temporal effects on biomedical language models. Our study shows that time matters for deploying biomedical language models, while the degree of performance degradation varies by biomedical tasks and statistical quantification approaches. We believe this study can establish a solid benchmark to evaluate and assess temporal effects on deploying biomedical language models.
模型基于历史数据进行训练,并将部署用于新的或未来的数据,这些数据可能与训练数据不同。虽然越来越多的生物医学任务采用了最先进的语言模型,但很少有研究考察当数据在开发和部署过程中通常会发生变化时,时间对生物医学模型的影响。本研究通过统计探究语言模型性能与三个生物医学任务中数据变化之间的关系来填补这一空白。我们采用多种指标来评估模型性能,使用距离方法来测量数据漂移,并运用统计方法来量化时间对生物医学语言模型的影响。我们的研究表明,时间对于部署生物医学语言模型至关重要,而性能下降的程度因生物医学任务和统计量化方法而异。我们相信这项研究可以建立一个坚实的基准,以评估和评估部署生物医学语言模型时的时间影响。