Brown Esther, Raval Shivam, Rojas Alex, Yao Jiayu, Parbhoo Sonali, Celi Leo A, Swaroop Siddharth, Pan Weiwei, Doshi-Velez Finale
Harvard University, Cambridge, MA.
Massachusetts Institute of Technology (MIT), Cambridge, MA.
AMIA Annu Symp Proc. 2025 May 22;2024:222-231. eCollection 2024.
In clinical settings, domain experts sometimes disagree on optimal treatment actions. These "decision points" must be comprehensively characterized, as they offer opportunities for Artificial Intelligence (AI) to provide statistically informed recommendations. To address this, we introduce a pipeline to investigate "decision regions", clusters of decision points, by training classifiers for prediction and applying clustering techniques to the classifier's embedding space. Our methodology includes: a robustness analysis confirming the topological stability of decision regions across diverse design parameters; an empirical study using the MIMIC-III database, focusing on the binary decision to administer vasopressors to hypotensive patients in the ICU; and an expert-validated summary of the decision regions' statistical attributes with novel clinical interpretations. We demonstrate that the topology of these decision regions remains stable across various design choices, reinforcing the reliability of our findings and generalizability of our approach. We encourage future work to extend this approach to other medical datasets.
在临床环境中,领域专家有时在最佳治疗行动上存在分歧。这些“决策点”必须得到全面表征,因为它们为人工智能(AI)提供了基于统计的建议机会。为了解决这个问题,我们引入了一个流程,通过训练用于预测的分类器并将聚类技术应用于分类器的嵌入空间来研究“决策区域”,即决策点的集群。我们的方法包括:一项稳健性分析,确认决策区域在不同设计参数下的拓扑稳定性;一项使用MIMIC-III数据库的实证研究,重点关注在重症监护病房(ICU)中对低血压患者使用血管加压药的二元决策;以及对决策区域统计属性的专家验证总结和新颖的临床解释。我们证明,这些决策区域的拓扑在各种设计选择中保持稳定,增强了我们研究结果的可靠性和方法的通用性。我们鼓励未来的工作将这种方法扩展到其他医学数据集。