Suppr超能文献

医生们在哪些方面存在分歧?确定选择血管加压药治疗时安全强化学习的决策点。

Where do doctors disagree? Characterizing Decision Points for Safe Reinforcement Learning in Choosing Vasopressor Treatment.

作者信息

Brown Esther, Raval Shivam, Rojas Alex, Yao Jiayu, Parbhoo Sonali, Celi Leo A, Swaroop Siddharth, Pan Weiwei, Doshi-Velez Finale

机构信息

Harvard University, Cambridge, MA.

Massachusetts Institute of Technology (MIT), Cambridge, MA.

出版信息

AMIA Annu Symp Proc. 2025 May 22;2024:222-231. eCollection 2024.

Abstract

In clinical settings, domain experts sometimes disagree on optimal treatment actions. These "decision points" must be comprehensively characterized, as they offer opportunities for Artificial Intelligence (AI) to provide statistically informed recommendations. To address this, we introduce a pipeline to investigate "decision regions", clusters of decision points, by training classifiers for prediction and applying clustering techniques to the classifier's embedding space. Our methodology includes: a robustness analysis confirming the topological stability of decision regions across diverse design parameters; an empirical study using the MIMIC-III database, focusing on the binary decision to administer vasopressors to hypotensive patients in the ICU; and an expert-validated summary of the decision regions' statistical attributes with novel clinical interpretations. We demonstrate that the topology of these decision regions remains stable across various design choices, reinforcing the reliability of our findings and generalizability of our approach. We encourage future work to extend this approach to other medical datasets.

摘要

在临床环境中,领域专家有时在最佳治疗行动上存在分歧。这些“决策点”必须得到全面表征,因为它们为人工智能(AI)提供了基于统计的建议机会。为了解决这个问题,我们引入了一个流程,通过训练用于预测的分类器并将聚类技术应用于分类器的嵌入空间来研究“决策区域”,即决策点的集群。我们的方法包括:一项稳健性分析,确认决策区域在不同设计参数下的拓扑稳定性;一项使用MIMIC-III数据库的实证研究,重点关注在重症监护病房(ICU)中对低血压患者使用血管加压药的二元决策;以及对决策区域统计属性的专家验证总结和新颖的临床解释。我们证明,这些决策区域的拓扑在各种设计选择中保持稳定,增强了我们研究结果的可靠性和方法的通用性。我们鼓励未来的工作将这种方法扩展到其他医学数据集。

相似文献

4
Applying Artificial Intelligence to Address the Knowledge Gaps in Cancer Care.应用人工智能解决癌症护理中的知识空白。
Oncologist. 2019 Jun;24(6):772-782. doi: 10.1634/theoncologist.2018-0257. Epub 2018 Nov 16.

本文引用的文献

3
Lactate metabolism in human health and disease.人体健康与疾病中的乳酸代谢。
Signal Transduct Target Ther. 2022 Sep 1;7(1):305. doi: 10.1038/s41392-022-01151-3.
10
The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas.使用强化学习算法应对人工胰腺的挑战。
Expert Rev Med Devices. 2013 Sep;10(5):661-73. doi: 10.1586/17434440.2013.827515. Epub 2013 Aug 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验