Suppr超能文献

将远程患者监测数据整合到用于预测急诊科利用率的机器学习模型中。

Integrating Remote Patient Monitoring Data into Machine Learning Models for Predicting Emergency Department Utilization.

作者信息

Farzana Ashika, Kalepalli Satish, DeLong Grant, Mehra Vishal, Fry Emily, Vawdrey David K, Mitchell Elliot G

机构信息

Geisinger, Danville, PA.

出版信息

AMIA Annu Symp Proc. 2025 May 22;2024:398-406. eCollection 2024.

Abstract

The integration of Remote Patient Monitoring (RPM) data into risk stratification models has emerged as a promising approach for improving healthcare delivery and patient outcomes. In this work, we explore the integration of RPM features - including at home monitoring of body weight, blood pressure, and blood oxygen - into a machine learning model that uses EHR data to predict the likelihood of emergency department (ED) visits or unplanned inpatient admissions within the next 30 days. Through exploratory data analysis, feature engineering, model training, and evaluation of a dataset with 913 patients, we found that RPM data has signal to predict unplanned utilization, and combining RPM data with EHR data improves the predictive power of the model, compared with either data source alone. We discuss the transformative potential of RPM data to augment predictive analytics capabilities in care management settings.

摘要

将远程患者监测(RPM)数据整合到风险分层模型中,已成为改善医疗服务提供和患者预后的一种有前景的方法。在这项工作中,我们探索将RPM特征——包括在家中监测体重、血压和血氧——整合到一个机器学习模型中,该模型利用电子健康记录(EHR)数据来预测未来30天内急诊室(ED)就诊或非计划住院的可能性。通过对一个包含913名患者的数据集进行探索性数据分析、特征工程、模型训练和评估,我们发现RPM数据具有预测非计划医疗利用的信号,并且与单独使用任一数据源相比,将RPM数据与EHR数据相结合可提高模型的预测能力。我们讨论了RPM数据在增强护理管理环境中的预测分析能力方面的变革潜力。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验