Li Hui, Wang Jinlian, Liu Hongfang
McWilliams School of Biomedical Informatics at UTHealth, Houston, Texas, USA.
AMIA Annu Symp Proc. 2025 May 22;2024:684-692. eCollection 2024.
This study introduces a groundbreaking approach to early cancer detection through the analysis of cell-free DNA (cfDNA), utilizing machine learning algorithms to navigate the complexities of low circulating tumor DNA (ctDNA) fractions and genetic heterogeneity. CfDNA, found in bodily fluids and comprising fragments from apoptotic or necrotic cells, offers a non-invasive means to identify cancer signals. With ctDNA-a subset of cfDNA from cancer cells-serving as a biomarker, the potential for detecting cancer at its earliest stages is vastly improved, enhancing treatment effectiveness and patient prognosis. However, the challenges of distinguishing cancer-specific signatures within cfDNA due to low ctDNA levels and the noise of genetic heterogeneity necessitate advanced methods beyond traditional mutation analysis. Leveraging high-throughput sequencing technologies and the precision of machine learning, our research aims to surmount these obstacles by identifying nuanced cancer signatures within cfDNA sequencing data. Machine learning's capability to model complex data relationships allows for the differentiation of subtle oncogenic patterns from background noise, thereby increasing the diagnostic accuracy of liquid biopsies. This paper outlines our exploration into employing machine learning for early cancer detection via cfDNA, detailing our method of transforming sequencing data into analyzable formats, enhancing signal detection through a sliding window technique, and predicting true tumor-origin fragments. By advancing cfDNA-based cancer diagnostics, this research not only signifies a leap towards more sensitive and specific early-stage cancer detection but also opens avenues for personalized oncology, where treatment strategies are informed by the unique genetic profile unveiled through cfDNA analysis. Our findings underscore the potential of integrating artificial intelligence with liquid biopsy technologies to revolutionize cancer diagnostics, offering new hope for early detection and personalized treatment pathways.
本研究引入了一种通过分析游离DNA(cfDNA)进行早期癌症检测的开创性方法,利用机器学习算法来应对低循环肿瘤DNA(ctDNA)片段和基因异质性的复杂性。cfDNA存在于体液中,由凋亡或坏死细胞的片段组成,提供了一种识别癌症信号的非侵入性方法。ctDNA作为cfDNA的一个子集,来自癌细胞,作为一种生物标志物,极大地提高了在癌症最早阶段进行检测的可能性,增强了治疗效果和患者预后。然而,由于ctDNA水平低以及基因异质性的干扰,在cfDNA中区分癌症特异性特征存在挑战,这就需要超越传统突变分析的先进方法。利用高通量测序技术和机器学习的精确性,我们的研究旨在通过识别cfDNA测序数据中细微的癌症特征来克服这些障碍。机器学习对复杂数据关系进行建模的能力使得能够从背景噪声中区分出细微的致癌模式,从而提高液体活检的诊断准确性。本文概述了我们利用机器学习通过cfDNA进行早期癌症检测的探索,详细介绍了我们将测序数据转化为可分析格式的方法、通过滑动窗口技术增强信号检测以及预测真正肿瘤来源片段的过程。通过推进基于cfDNA的癌症诊断,这项研究不仅标志着向更敏感、更特异的早期癌症检测迈出了一大步,还为个性化肿瘤学开辟了道路,在个性化肿瘤学中,治疗策略是根据通过cfDNA分析揭示的独特基因特征来制定的。我们的研究结果强调了将人工智能与液体活检技术相结合以彻底改变癌症诊断的潜力,为早期检测和个性化治疗途径带来了新的希望。