Bovenzi Inko, Carmel Adi, Hu Michael, Hurwitz Rebecca, McBride Fiona, Benac Leo, Ayala José Roberto Tello, Doshi-Velez Finale
Harvard University, Cambridge, MA, USA.
AMIA Annu Symp Proc. 2025 May 22;2024:202-211. eCollection 2024.
In aims to uncover insights into medical decision-making embedded within observational data from clinical settings, we present a novel application of Inverse Reinforcement Learning (IRL) that identifies suboptimal clinician actions based on the actions of their peers. This approach centers two stages of IRL with an intermediate step to prune trajectories displaying behavior that deviates significantly from the consensus. This enables us to effectively identify clinical priorities and values from ICU data containing both optimal and suboptimal clinician decisions. We observe that the benefits of removing suboptimal actions vary by disease and differentially impact certain demographic groups.
为了深入了解临床环境观察数据中所蕴含的医疗决策,我们提出了一种逆强化学习(IRL)的新颖应用,该应用基于同行的行为来识别次优的临床医生行为。这种方法以逆强化学习的两个阶段为中心,并设有一个中间步骤来修剪那些显示出与共识有显著偏差行为的轨迹。这使我们能够从包含最佳和次优临床医生决策的重症监护病房(ICU)数据中有效地识别出临床重点和价值观。我们观察到,去除次优行为的益处因疾病而异,并且对某些人口群体有不同的影响。