Suppr超能文献

使用逻辑回归开发临床应用的预测模型:综述

Developing prediction models for clinical use using logistic regression: an overview.

作者信息

Shipe Maren E, Deppen Stephen A, Farjah Farhood, Grogan Eric L

机构信息

Vanderbilt University Medical Center, Nashville, TN, USA.

Tennessee Valley Healthcare System, Nashville, TN, USA.

出版信息

J Thorac Dis. 2019 Mar;11(Suppl 4):S574-S584. doi: 10.21037/jtd.2019.01.25.

Abstract

Prediction models help healthcare professionals and patients make clinical decisions. The goal of an accurate prediction model is to provide patient risk stratification to support tailored clinical decision-making with the hope of improving patient outcomes and quality of care. Clinical prediction models use variables selected because they are thought to be associated (either negatively or positively) with the outcome of interest. Building a model requires data that are computer-interpretable and reliably recorded within the time frame of interest for the prediction. Such models are generally defined as either diagnostic, likelihood of disease or disease group classification, or prognostic, likelihood of response or risk of recurrence. We describe a set of guidelines and heuristics for clinicians to use to develop a logistic regression-based prediction model for binary outcomes that is intended to augment clinical decision-making.

摘要

预测模型有助于医疗保健专业人员和患者做出临床决策。准确的预测模型的目标是提供患者风险分层,以支持量身定制的临床决策,希望改善患者预后和护理质量。临床预测模型使用所选变量,因为这些变量被认为与感兴趣的结果(无论是负相关还是正相关)相关。构建模型需要计算机可解释且在预测感兴趣的时间范围内可靠记录的数据。此类模型通常定义为诊断性的(疾病或疾病组分类的可能性)或预后性的(反应可能性或复发风险)。我们描述了一套指南和启发式方法,供临床医生用于开发基于逻辑回归的二元结果预测模型,旨在增强临床决策。

相似文献

1
Developing prediction models for clinical use using logistic regression: an overview.
J Thorac Dis. 2019 Mar;11(Suppl 4):S574-S584. doi: 10.21037/jtd.2019.01.25.
3
Building interpretable predictive models for pediatric hospital readmission using Tree-Lasso logistic regression.
Artif Intell Med. 2016 Sep;72:12-21. doi: 10.1016/j.artmed.2016.07.003. Epub 2016 Jul 29.
4
From algorithms to action: improving patient care requires causality.
BMC Med Inform Decis Mak. 2024 Apr 26;24(1):111. doi: 10.1186/s12911-024-02513-3.

引用本文的文献

5
Mapping the landscape of machine learning in chronic disease management: A comprehensive bibliometric study.
Digit Health. 2025 Jul 23;11:20552076251361614. doi: 10.1177/20552076251361614. eCollection 2025 Jan-Dec.
6
Predicting outcomes following endovascular aortoiliac revascularization using machine learning.
NPJ Digit Med. 2025 Jul 24;8(1):475. doi: 10.1038/s41746-025-01865-y.
8
Risk Factors and Predictive Models for Sarcopenia in Older Adults.
Aging Med (Milton). 2025 Apr 18;8(3):192-199. doi: 10.1002/agm2.70012. eCollection 2025 Jun.
9
Predictive for patients with pneumonia in pediatric intensive care unit.
Front Pediatr. 2025 Jun 6;13:1583573. doi: 10.3389/fped.2025.1583573. eCollection 2025.
10
A predictive model to identify optimal candidates for surgery among patients with metastatic colorectal cancer.
Front Oncol. 2025 Jun 5;15:1573431. doi: 10.3389/fonc.2025.1573431. eCollection 2025.

本文引用的文献

1
A review of statistical and machine learning methods for modeling cancer risk using structured clinical data.
Artif Intell Med. 2018 Aug;90:1-14. doi: 10.1016/j.artmed.2018.06.002. Epub 2018 Jul 14.
2
The Net Reclassification Index (NRI): a Misleading Measure of Prediction Improvement Even with Independent Test Data Sets.
Stat Biosci. 2015 Oct 1;7(2):282-295. doi: 10.1007/s12561-014-9118-0. Epub 2014 Aug 23.
3
Predicting lung cancer prior to surgical resection in patients with lung nodules.
J Thorac Oncol. 2014 Oct;9(10):1477-84. doi: 10.1097/JTO.0000000000000287.
4
Net risk reclassification p values: valid or misleading?
J Natl Cancer Inst. 2014 Apr;106(4):dju041. doi: 10.1093/jnci/dju041. Epub 2014 Mar 28.
5
Development and evaluation of the universal ACS NSQIP surgical risk calculator: a decision aid and informed consent tool for patients and surgeons.
J Am Coll Surg. 2013 Nov;217(5):833-42.e1-3. doi: 10.1016/j.jamcollsurg.2013.07.385. Epub 2013 Sep 18.
6
Probability of cancer in pulmonary nodules detected on first screening CT.
N Engl J Med. 2013 Sep 5;369(10):910-9. doi: 10.1056/NEJMoa1214726.
8
Diagnostic and prognostic prediction models.
J Thromb Haemost. 2013 Jun;11 Suppl 1:129-41. doi: 10.1111/jth.12262.
9
Risk prediction models: II. External validation, model updating, and impact assessment.
Heart. 2012 May;98(9):691-8. doi: 10.1136/heartjnl-2011-301247. Epub 2012 Mar 7.
10
Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker.
Heart. 2012 May;98(9):683-90. doi: 10.1136/heartjnl-2011-301246. Epub 2012 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验