Sadaf Muhtasim Ul Karim, Chen Ziheng, Subbulakshmi Radhakrishnan Shiva, Sun Yongwen, Ding Lei, Graves Andrew R, Yang Yang, Redwing Joan M, Das Saptarshi
Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, USA.
2D Crystal Consortium Materials Innovation Platform, The Pennsylvania State University, University Park, PA, USA.
Nat Commun. 2025 May 26;16(1):4879. doi: 10.1038/s41467-025-59993-8.
Static Random-Access Memory (SRAM) cells are fundamental in computer architecture, serving crucial roles in cache memory, buffers, and registers due to their high-speed performance and low power consumption. However, scaling SRAM cells to advanced technology nodes poses significant challenges. Three-dimensional (3D) integration offers a promising solution for reinstating SRAM scaling by vertically stacking devices, thereby reducing the physical footprint. In this study, we demonstrate approximately 40% reduction in cell area and improved interconnect length for 3D SRAM cells constructed from field-effect transistors (FETs) based on monolayer MoS, compared to the planar design. Using the layout for the 450 nm technology node, our 2-tier 3D SRAM design achieves better integration density than the planar 350 nm node. Furthermore, we project up to 70% reduction in cell area for 3-tier 3D SRAM cells, closely matching the cell area of the planar 250 nm node. We have successfully realized 1 kilobit of planar SRAM and 2-tier 3D SRAM cell arrays occupying areas of 0.0358 mm² and 0.0251 mm², respectively, each comprising 6144 MoS FETs. Finally, we project the footprint advantage for 3D SRAM cells at scaled technology nodes. Our demonstration highlights the potential of 3D integration of 2D FETs in advancing SRAM technology.
静态随机存取存储器(SRAM)单元是计算机架构中的基础部件,因其高速性能和低功耗,在高速缓冲存储器、缓存和寄存器中发挥着关键作用。然而,将SRAM单元缩小到先进技术节点面临重大挑战。三维(3D)集成通过垂直堆叠器件为恢复SRAM缩放提供了一个有前景的解决方案,从而减少物理占地面积。在本研究中,我们证明,与平面设计相比,基于单层MoS的场效应晶体管(FET)构建的3D SRAM单元的单元面积减少了约40%,互连长度得到改善。使用450 nm技术节点的布局,我们的2层3D SRAM设计实现了比平面350 nm节点更好的集成密度。此外,我们预计3层3D SRAM单元的单元面积将减少多达70%,与平面250 nm节点的单元面积非常接近。我们已成功实现了1千位的平面SRAM和2层3D SRAM单元阵列,分别占据0.0358 mm²和0.0251 mm²的面积,每个阵列包含6144个MoS FET。最后,我们预测了3D SRAM单元在缩小技术节点上的占地面积优势。我们的演示突出了二维FET的3D集成在推进SRAM技术方面的潜力。