Liu Chang-Ju, Wan Yi, Li Lain-Jong, Lin Chih-Pin, Hou Tuo-Hung, Huang Zi-Yuan, Hu Vita Pi-Ho
Department of Electrical Engineering, National Central University, Taoyuan, 320, Taiwan.
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, 9999077, Hong Kong.
Adv Mater. 2022 Dec;34(48):e2107894. doi: 10.1002/adma.202107894. Epub 2022 Jan 21.
2D transition-metal dichalcogenide semiconductors, such as MoS and WSe , with adequate bandgaps are promising channel materials for ultrascaled logic transistors. This scalability study of 2D material (2DM)-based field-effect transistor (FET) and static random-access memory (SRAM) cells analyzing the impact of layer thickness reveals that the monolayer 2DM FET with superior electrostatics is beneficial for its ability to mitigate the read-write conflict in an SRAM cell at scaled technology nodes (1-2.1 nm). Moreover, the monolayer 2DM SRAM exhibits lower cell read access time and write time than the bilayer and trilayer 2DM SRAM cells at fixed leakage power. This simulation predicts that the optimization of 2DM SRAM designed with state-of-the-art contact resistance, mobility, and equivalent oxide thickness leads to excellent stability and operation speed at the 1-nm node. Applying the nanosheet (NS) gate-all-around (GAA) structure to 2DM further reduces cell read access time and write time and improves the area density of the SRAM cells, demonstrating a feasible scaling path beyond Si technology using 2DM NSFETs. In addition to the device design, the process challenges for 2DM NSFETs, including the cost-effective stacking of 2DM layers, formation of electrical contacts, suspended 2DM channels, and GAA structures, are also discussed.
二维过渡金属二硫属化物半导体,如二硫化钼(MoS)和二硒化钨(WSe),具有合适的带隙,是超大规模逻辑晶体管很有前景的沟道材料。这项对基于二维材料(2DM)的场效应晶体管(FET)和静态随机存取存储器(SRAM)单元进行的可扩展性研究,分析了层厚度的影响,结果表明,具有优异静电性能的单层2DM FET有利于缓解在缩放技术节点(1 - 2.1纳米)下SRAM单元中的读写冲突。此外,在固定泄漏功率下,单层2DM SRAM的单元读取访问时间和写入时间比双层和三层2DM SRAM单元更低。该模拟预测,采用最先进的接触电阻、迁移率和等效氧化层厚度设计的2DM SRAM的优化,在1纳米节点处可实现出色的稳定性和运行速度。将纳米片(NS)全栅(GAA)结构应用于2DM进一步缩短了单元读取访问时间和写入时间,并提高了SRAM单元的面积密度,证明了使用2DM NSFET超越硅技术的可行缩放路径。除了器件设计,还讨论了2DM NSFET的工艺挑战,包括2DM层的经济高效堆叠、电接触的形成、悬空的2DM沟道和GAA结构。