Suppr超能文献

沙特阿拉伯乳腺癌患者复发预测的预后模型。

Prognostic model for predicting recurrence in breast cancer patients in Saudi Arabia.

作者信息

Khan Ousman, Ajadi Jimoh Olawale, Almsned Fahad, Almohanna Hani, Alrasheed Amjad, Sanusi Ridwan A, Adegoke Nurudeen A

机构信息

Department of Mathematics, College of Computing and Mathematics, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.

Department of General Sciences, Deanship of Support Studies, Alasala Colleges, Dammam, 32324, Saudi Arabia.

出版信息

Sci Rep. 2025 May 26;15(1):18388. doi: 10.1038/s41598-025-94530-z.

Abstract

Breast cancer recurrence presents a significant global health challenge, and accurate prediction is crucial for effective patient management and improved outcomes. Reliable predictive tools can help tailor therapeutic approaches, provide personalized care, and enhance patient outcomes. In light of the current lack of such tools in clinical practice, our study aimed to develop predictive models for breast cancer recurrence within three years of treatment. We analyzed data from 408 breast cancer patients at the King Fahd Specialist Hospital in Dammam, Saudi Arabia and divided them into training (n = 285) and test (n = 123) cohorts. Using multivariable penalized logistic regression combined with a nested cross-validation framework and multivariate Cox regression analysis to determine time-dependent risk factors for breast cancer recurrence, we developed prognostic models that incorporated age, stage, tumor size, and treatment type. We evaluated the performance of the models using both the area under the receiver operating characteristic curve for multivariate logistic regression and C-index for multivariate Cox regression. The multivariate logistic regression model achieved an area under the curve (AUC) of 76% (95% confidence interval [CI]: 72-81%) for the training set and 76% (95% CI: 66-87%) for the test set. The Cox regression analysis yielded a C-index of 0.81 for the training set (95% CI: 0.73-0.84) and 0.84 for the test set (95% CI: 0.76-0.89). Chemotherapy was found to decrease recurrence odds by 86% (adjusted odds ratio [AOR]: 0.143, 95% CI: 0.089-0.218, p < 0.0001), and surgery resulted in a 99% reduction in recurrence probability (AOR: 0.009, 95% CI: 0.005-0.014, p < 0.0001). Increased tumor size improved the recurrence odds by 48.5% (AOR: 1.485, 95% CI: 1.128-1.918, p = 0.0043), while age did not significantly predict recurrence (AOR: 0.841, 95% CI: 0.657-1.061, p = 0.1398). The newly developed, routinely collected baseline clinical features to predict breast cancer recurrence may be a valuable tool for clinical decision-making and is freely available online. The tool can be accessed through the following link: https://iv3p9h-nurudeen-adegoke.shinyapps.io/breast_cancer .

摘要

乳腺癌复发是一项重大的全球健康挑战,准确预测对于有效的患者管理和改善治疗结果至关重要。可靠的预测工具有助于定制治疗方法、提供个性化护理并提高患者治疗效果。鉴于目前临床实践中缺乏此类工具,我们的研究旨在开发治疗后三年内乳腺癌复发的预测模型。我们分析了沙特阿拉伯达曼法赫德国王专科医院408例乳腺癌患者的数据,并将他们分为训练组(n = 285)和测试组(n = 123)。使用多变量惩罚逻辑回归结合嵌套交叉验证框架以及多变量Cox回归分析来确定乳腺癌复发的时间依赖性风险因素,我们开发了包含年龄、分期、肿瘤大小和治疗类型的预后模型。我们使用多变量逻辑回归的受试者工作特征曲线下面积和多变量Cox回归的C指数来评估模型的性能。多变量逻辑回归模型在训练集上的曲线下面积(AUC)为76%(95%置信区间[CI]:72 - 81%),在测试集上为76%(95%CI:66 - 87%)。Cox回归分析在训练集上的C指数为0.81(95%CI:0.73 - 0.84),在测试集上为0.84(95%CI:0.76 - 0.89)。发现化疗可使复发几率降低86%(调整优势比[AOR]:0.143,95%CI:0.089 - 0.218,p < 0.0001),手术使复发概率降低99%(AOR:0.009,95%CI:0.005 - 0.014,p < 0.0001)。肿瘤大小增加使复发几率提高48.5%(AOR:1.485,95%CI:1.128 - 1.918,p = 0.0043),而年龄对复发无显著预测作用(AOR:0.841,95%CI:0.657 - 1.061,p = 0.1398)。新开发的、常规收集的用于预测乳腺癌复发的基线临床特征可能是临床决策的宝贵工具,可在网上免费获取。该工具可通过以下链接访问:https://iv3p9h-nurudeen-adegoke.shinyapps.io/breast_cancer

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f08/12106668/4440b52eb898/41598_2025_94530_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验