Suppr超能文献

使用卷积神经网络对脑海绵状畸形进行自动分割。

Auto-segmentation of cerebral cavernous malformations using a convolutional neural network.

作者信息

Chou Chi-Jen, Yang Huai-Che, Lee Cheng-Chia, Jiang Zhi-Huan, Chen Ching-Jen, Wu Hsiu-Mei, Lin Chun-Fu, Lai I-Chun, Peng Syu-Jyun

机构信息

Division of Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.

School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.

出版信息

BMC Med Imaging. 2025 May 26;25(1):190. doi: 10.1186/s12880-025-01738-6.

Abstract

BACKGROUND

This paper presents a deep learning model for the automated segmentation of cerebral cavernous malformations (CCMs).

METHODS

The model was trained using treatment planning data from 199 Gamma Knife (GK) exams, comprising 171 cases with a single CCM and 28 cases with multiple CCMs. The training data included initial MRI images with target CCM regions manually annotated by neurosurgeons. For the extraction of data related to the brain parenchyma, we employed a mask region-based convolutional neural network (Mask R-CNN). Subsequently, this data was processed using a 3D convolutional neural network known as DeepMedic.

RESULTS

The efficacy of the brain parenchyma extraction model was demonstrated via five-fold cross-validation, resulting in an average Dice similarity coefficient of 0.956 ± 0.002. The segmentation models used for CCMs achieved average Dice similarity coefficients of 0.741 ± 0.028 based solely on T2W images. The Dice similarity coefficients for the segmentation of CCMs types were as follows: Zabramski Classification type I (0.743), type II (0.742), and type III (0.740). We also developed a user-friendly graphical user interface to facilitate the use of these models in clinical analysis.

CONCLUSIONS

This paper presents a deep learning model for the automated segmentation of CCMs, demonstrating sufficient performance across various Zabramski classifications.

TRIAL REGISTRATION

not applicable.

摘要

背景

本文提出了一种用于脑海绵状血管畸形(CCM)自动分割的深度学习模型。

方法

该模型使用了来自199次伽玛刀(GK)检查的治疗计划数据进行训练,其中包括171例单发CCM病例和28例多发CCM病例。训练数据包括由神经外科医生手动标注了目标CCM区域的初始MRI图像。为了提取与脑实质相关的数据,我们采用了基于掩码区域的卷积神经网络(Mask R-CNN)。随后,使用一种名为DeepMedic的3D卷积神经网络对该数据进行处理。

结果

通过五折交叉验证证明了脑实质提取模型的有效性,平均骰子相似系数为0.956±0.002。仅基于T2W图像的CCM分割模型平均骰子相似系数为0.741±0.028。CCM各类型分割的骰子相似系数如下:Zabramski分类I型(0.743)、II型(0.742)和III型(0.740)。我们还开发了一个用户友好的图形用户界面,以方便在临床分析中使用这些模型。

结论

本文提出了一种用于CCM自动分割的深度学习模型,在各种Zabramski分类中均表现出足够的性能。

试验注册

不适用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验