Barbosa Matheus E P, Lacerda Miller, Calvani Camila, Franca Thiago, Casaril Aline E, Infran Jucelei O M, Oliveira Alessandra G, Cena Cicero
Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, UFMS-Universidade Federal de Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil.
Laboratório de Parasitologia Humana, Instituto de Biociências, UFMS-Universidade Federal de Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil.
Anal Chem. 2025 Jun 10;97(22):11581-11588. doi: 10.1021/acs.analchem.5c00579. Epub 2025 May 26.
Accurate identification of sandfly species is critical for controlling and preventing the spread of visceral leishmaniasis, a major public health concern in Latin America. Morphological similarities between female and present a significant challenge for traditional identification methods, highlighting the need for innovative alternative approaches. This study evaluates the potential of Fourier transform infrared (FTIR) spectroscopy associated with principal component analysis (PCA) and machine learning (ML) algorithms for species discrimination. Using vibrational bands predominantly assigned to lipid and carbohydrate molecules, the method achieved over 95% classification accuracy with the Linear support vector machine. Our results demonstrate that the 2970-2800 cm (C-H stretching) and 1154-1109 cm (C-O and C═C stretching) spectral ranges are particularly informative for distinguishing the species. The approach offers a rapid, cost-effective, and nondestructive solution for entomological classification, significantly enhancing vector surveillance capabilities. The integration of FTIR and machine learning (ML) techniques represents a transformative tool for entomological and epidemiological studies, providing valuable support for disease control strategies.
准确识别白蛉物种对于控制和预防内脏利什曼病的传播至关重要,内脏利什曼病是拉丁美洲一个主要的公共卫生问题。雌性白蛉与……之间的形态相似性给传统识别方法带来了重大挑战,凸显了创新替代方法的必要性。本研究评估了傅里叶变换红外(FTIR)光谱结合主成分分析(PCA)和机器学习(ML)算法进行物种鉴别的潜力。利用主要归属于脂质和碳水化合物分子的振动带,该方法通过线性支持向量机实现了超过95%的分类准确率。我们的结果表明,2970 - 2800 cm(C - H伸缩)和1154 - 1109 cm(C - O和C═C伸缩)光谱范围对于区分物种特别有信息价值。该方法为昆虫学分类提供了一种快速、经济高效且无损的解决方案,显著增强了病媒监测能力。FTIR和机器学习(ML)技术的整合代表了昆虫学和流行病学研究的一种变革性工具,为疾病控制策略提供了有价值的支持。
原文中“female and present”表述似乎不完整,可能影响译文的精准度,但按照要求进行了翻译。