Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK.
Oxford Nanopore Technologies plc, Oxford, UK.
Nat Nanotechnol. 2022 Jul;17(7):708-713. doi: 10.1038/s41565-022-01116-1. Epub 2022 Apr 28.
Membrane nanopores are key for molecular transport in biology, portable DNA sequencing, label-free single-molecule analysis and nanomedicine. Transport traditionally relies on barrel-like channels of a few nanometres width, but there is considerable scientific and technological interest for much wider structures of tunable shape. Yet, these nanopores do not exist in nature and are challenging to build using existing de novo routes for proteins. Here, we show that rational design with DNA can drastically expand the structural and functional range of membrane nanopores. Our design strategy bundles DNA duplexes into pore subunits that modularly arrange to form tunable pore shapes and lumen widths of up to tens of nanometres. Functional units for recognition or signalling can be optionally attached. By dialling in essential parameters, we demonstrate the utility and potential of the custom-engineered nanopores by electrical direct single-molecule sensing of 10-nm-sized proteins using widely used research and hand-held analysis devices. The designer nanopores illustrate how DNA nanotechnology can deliver functional biomolecular structures to be used in synthetic biology, single-molecule enzymology and biophysical analysis, as well as portable diagnostics and environmental screening.
膜纳米孔是生物学中分子运输、便携式 DNA 测序、无标记单分子分析和纳米医学的关键。传统的运输依赖于几纳米宽度的桶状通道,但科学界和技术界对可调形状的更宽结构非常感兴趣。然而,这些纳米孔在自然界中并不存在,并且使用现有的从头蛋白质途径构建它们具有挑战性。在这里,我们表明,通过 DNA 的合理设计可以极大地扩展膜纳米孔的结构和功能范围。我们的设计策略将 DNA 双链体捆绑成孔亚基,这些亚基可以模块化排列,形成可调节的孔形状和长达数十纳米的管腔宽度。可以选择附加用于识别或信号的功能单元。通过调整基本参数,我们使用广泛使用的研究和手持式分析设备,通过电直接单分子感应 10nm 大小的蛋白质,证明了定制纳米孔的实用性和潜力。设计的纳米孔说明了 DNA 纳米技术如何将功能性生物分子结构应用于合成生物学、单分子酶学和生物物理分析,以及便携式诊断和环境筛选。